Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The hallmark of the condition is a sunken appearance of the sternum. The most common form is a cup-shaped concavity, involving the lower end of the sternum; also a broader concavity involving the upper costal cartilages is possible. The lower-most ribs may protrude ("flared ribs"). Pectus excavatum defects may be symmetric or asymmetric.
People may also experience chest and back pain, which is usually of musculoskeletal origin.
In mild cases, cardiorespiratory function is normal, although the heart can be displaced and/or rotated. In severe cases, mitral valve prolapse may be present and physical capability may be limited due to base lung capacity being decreased.
Psychological symptoms manifest with feelings of embarrassment, social anxiety, shame, limited capacity for activities and communication, negativity, intolerance, frustration, and even depression.
People with pectus carinatum usually develop normal hearts and lungs, but the malformation may prevent these from functioning optimally. In moderate to severe cases of pectus carinatum, the chest wall is rigidly held in an outward position. Thus, respirations are inefficient and the individual needs to use the accessory muscles for respiration, rather than normal chest muscles, during strenuous exercise. This negatively affects gas exchange and causes a decrease in stamina. Children with pectus malformations often tire sooner than their peers, due to shortness of breath and fatigue. Commonly concurrent is mild to moderate asthma.
Some children with pectus carinatum also have scoliosis (i.e., curvature of the spine). Some have mitral valve prolapse, a condition in which the heart mitral valve functions abnormally. Connective tissue disorders involving structural abnormalities of the major blood vessels and heart valves are also seen. Although rarely seen, some children have other connective tissue disorders, including arthritis, visual impairment and healing impairment.
Apart from the possible physiologic consequences, pectus malformations can have a significant psychologic impact. Some people, especially those with milder cases, live happily with pectus carinatum. For others, though, the shape of the chest can damage their self-image and confidence, possibly disrupting social connections and causing them to feel uncomfortable throughout adolescence and adulthood. As the child grows older, bodybuilding techniques may be useful for balancing visual impact.
A less common variant of pectus carinatum is "pectus arcuatum" (also called type 2 pectus excavatum, chondromanubrial malformation or Currarino–Silverman syndrome or pouter pigeon malformation), which produces a manubrial and upper sternal protrusion, particularly also at the sternal angle. Pectus arcuatum is often confused with a combination of pectus carinatum and pectus excavatum, but in pectus arcuatum the visual appearance is characterized by a protrusion of the costal cartilages and there is no depression of the sternum.
Pectus carinatum is an overgrowth of costal cartilage causing the sternum to protrude forward. It primarily occurs among four different patient groups, and males are more frequently affected than females. Most commonly, pectus carinatum develops in 11-to-14-year-old pubertal males undergoing a growth spurt. Some parents report that their child's pectus carinatum seemingly popped up overnight. Second most common is the presence of pectus carinatum at or shortly after birth. The condition may be evident in newborns as a rounded anterior chest wall. As the child reaches age 2 or 3 years of age, the outward sternal protrusion becomes more pronounced. Pectus carinatum can also be caused by vitamin D deficiency in children (Rickets) due to deposition of unmineralized osteoid. Least common is a pectus carinatum malformation following open-heart surgery or in children with poorly controlled bronchial asthma.
Pectus carinatum is generally a solitary, non-syndromic abnormality. However, the condition may be present in association with other syndromes: Turner syndrome, Noonan syndrome, Loeys-Dietz syndrome, Marfan syndrome, Ehlers-Danlos syndrome, Morquio syndrome, trisomy 18, trisomy 21, homocystinuria, osteogenesis imperfecta, multiple lentigines syndrome (LEOPARD syndrome), Sly syndrome (mucopolysaccharidosis type VII), and scoliosis.
In about 25% of cases of pectus carinatum, the patient has a family member with the condition.
Pectus excavatum is a congenital deformity of the anterior thoracic wall in which the sternum and rib cage grow abnormally. This produces a caved-in or sunken appearance of the chest. It can either be present at birth or not develop until puberty.
Pectus excavatum is sometimes considered to be cosmetic, but depending on the severity, it can impair cardiac and respiratory function and cause pain in the chest and back.
People with the condition may experience negative psychosocial effects, and avoid activities that expose the chest in some societies.
Poland syndrome, named after British surgeon Alfred Poland, is a rare birth defect characterized by underdevelopment or absence of the chest muscle (pectoralis) on one side of the body, and usually also webbing of the fingers (cutaneous syndactyly) of the hand on the same side (the ipsilateral hand). In most affected individuals, the missing part is the large section of the muscle that normally attaches to the upper arm on one side and the breastbone (sternum) on the other. Other abnormalities may occur on the affected side of the torso. In some cases, additional muscles in the chest wall, side, and shoulder are missing or underdeveloped.
There may also be rib cage abnormalities, such as shortened ribs, and the ribs may be noticeable due to less fat under the skin (subcutaneous fat). Breast and nipple abnormalities may also occur, and underarm (axillary) hair is sometimes sparse or abnormally placed. In most cases, the abnormalities in the chest area do not cause health problems or affect movement. Poland syndrome most often affects the right side of the body, and occurs more often in males than in females.
It is usually considered a unilateral condition. Some have claimed that the term can be applied in bilateral presentation, but others recommend using alternate terminology in those cases.
Breath sounds on the side of the rupture may be diminished, respiratory distress may be present, and the chest or abdomen may be painful. Orthopnea, dyspnea which occurs when lying flat, may also occur, and coughing is another sign. In people with herniation of abdominal organs, signs of intestinal blockage or sepsis in the abdomen may be present. Bowel sounds may be heard in the chest, and shoulder or epigastric pain may be present. When the injury is not noticed right away, the main symptoms are those that indicate bowel obstruction.
Very frequent signs
- Abnormal gastrointestinal tract
- Absent pectoral muscles
- Brachydactyly (Short fingers)
- Dextrocardia
- Diaphragmatic hernia/defect
- Humerus absent/abnormal
- Liver/biliary tract anomalies
- Maternal diabetes
- Oligodactyly/missing fingers
- Radius absent/abnormal
- Rhizomelic micromelia (relatively shorter proximal segment of the limbs compared to the middle and the distal segments)
- Sparsity or abnormality of axillary hair on affected side
- Syndactyly of fingers (webbing)
- Ulna absent/abnormal
- Upper limb asymmetry
- Abnormal rib
- Simian crease on affected side
Frequent signs
- Hypoplastic/absent nipples
- Scapula anomaly
Occasional signs
- Agenesis/hypoplasia of kidneys
- Encephalocele/exencephaly
- Abnormal morphology of hypothalamic-hypophyseal axis
- Abnormal function of hypothalamic-hypophyseal axis
- Microcephaly
- Preaxial polydactyly
- Ureteric anomalies (reflux/duplex system)
- Vertebral segmentation anomaly
Diaphragmatic rupture (also called diaphragmatic injury or tear) is a tear of the diaphragm, the muscle across the bottom of the ribcage that plays a crucial role in respiration. Most commonly, acquired diaphragmatic tears result from physical trauma. Diaphragmatic rupture can result from blunt or penetrating trauma and occurs in about 5% of cases of severe blunt trauma to the trunk.
Diagnostic techniques include X-ray, computed tomography, and surgical techniques such as laparotomy. Diagnosis is often difficult because signs may not show up on X-ray, or signs that do show up appear similar to other conditions. Signs and symptoms included chest and abdominal pain, difficulty breathing, and decreased lung sounds. When a tear is discovered, surgery is needed to repair it.
Injuries to the diaphragm are usually accompanied by other injuries, and they indicate that more severe injury may have occurred. The outcome often depends more on associated injuries than on the diaphragmatic injury itself. Since the pressure is higher in the abdominal cavity than the chest cavity, rupture of the diaphragm is almost always associated with herniation of abdominal organs into the chest cavity, which is called a traumatic diaphragmatic hernia. This herniation can interfere with breathing, and blood supply can be cut off to organs that herniate through the diaphragm, damaging them.
Hemivertebrae are wedge-shaped vertebrae and therefore can cause an angle in the spine (such as kyphosis, scoliosis, and lordosis).
Among the congenital vertebral anomalies, hemivertebrae are the most likely to cause neurologic problems. The most common location is the midthoracic vertebrae, especially the eighth (T8). Neurologic signs result from severe angulation of the spine, narrowing of the spinal canal, instability of the spine, and luxation or fracture of the vertebrae. Signs include rear limb weakness or paralysis, urinary or fecal incontinence, and spinal pain. Most cases of hemivertebrae have no or mild symptoms, so treatment is usually conservative. Severe cases may respond to surgical spinal cord decompression and vertebral stabilization.
Associations
Recognised associations are many and include:
Aicardi syndrome,
cleidocranial dysostosis,
gastroschisis 3,
Gorlin syndrome,
fetal pyelectasis 3,
Jarcho-Levin syndrome,
OEIS complex,
VACTERL association.
The probable cause of hemivertebrae is a lack of blood supply causing part of the vertebrae not to form.
Hemivertebrae in dogs are most common in the tail, resulting in a screw shape.
Congenital vertebral anomalies are a collection of malformations of the spine. Most around 85% are not clinically significant, but they can cause compression of the spinal cord by deforming the vertebral canal or causing instability. This condition occurs in the womb. Congenital vertebral anomalies include alterations of the shape and number of vertebrae.
The main presentation of the syndrome is significant, acute pain in the chest, along with tenderness and some swelling of the cartilages affected, which is commonly palpable on examination. Perceived pain is often exacerbated with respiration. Although many times it can be extremely painful, to the point of being debilitating, Tietze's syndrome is considered to be a benign condition that generally resolves in 12 weeks. However, it can often be a chronic condition.
The associated chest pain may present similarly to angina pectoris, normally associated with heart disease, and can cause hyperventilation, anxiety or panic attacks, syncope (passing out), and temporary hypoesthesia (numbness) or paralysis.
Many cases of myocardial infarction (heart attack) patients have been re-considered and improperly diagnosed, due to the identical nature of the symptoms. In females, it is often misdiagnosed as mastalgia. Costochondritis symptoms are similar to Tietze's, the prime difference being that the pain radiates to the arms and shoulders in the latter.
Tietze syndrome (also called chondropathia tuberosa or costochondral junction syndrome) is a benign inflammation of one or more of the costal cartilages. It was first described in 1921 by the German surgeon Alexander Tietze (1864–1927).
Tietze syndrome is not the same as costochondritis. Tietze syndrome is differentiated from costochondritis by swelling of the costal cartilages, which does not appear in costochondritis. Like costochondritis, it was at one time thought to be associated with, or caused by, a viral infection acquired during surgery. This is now known not to be the case, as most sufferers have not had recent surgery.
Signs one may have a broken rib are:
- Pain on inhalation
- Swelling in chest area
- Bruise in chest area
- Increasing shortness of breath
- Coughing up blood (rib may have damaged lung)
Because children have more flexible chest walls than adults do, their ribs are more likely to bend than to break; therefore the presence of rib fractures in children is evidence of a significant amount of force and may indicate severe thoracic injuries such as pulmonary contusion. Rib fractures are also a sign of more serious injury in elderly people.
A sternal fracture is a fracture of the sternum (the breastbone), located in the center of the chest. The injury, which occurs in 5–8% of people who experience significant blunt chest trauma, may occur in vehicle accidents, when the still-moving chest strikes a steering wheel or dashboard or is injured by a seatbelt. Cardiopulmonary resuscitation, commonly known as CPR, has also been known to cause thoracic injury, including sternum and rib fractures. Sternal fractures may also occur as a pathological fracture, in people who have weakened bone in their sternum, due to another disease process. Sternal fracture can interfere with breathing by making it more painful; however, its primary significance is that it can indicate the presence of serious associated internal injuries, especially to the heart and lungs.
Rib fractures can occur with or without direct trauma during recreational activity. Cardiopulmonary resuscitation (CPR) has also been known to cause thoracic injury, including but not limited to rib and sternum fractures. They can also occur as a consequence of diseases such as cancer or rheumatoid arthritis. While for elderly individuals a fall can cause a rib fracture, in adults automobile accidents are a common event for such an injury.
Flail chest is a life-threatening medical condition that occurs when a segment of the rib cage breaks due to trauma and becomes detached from the rest of the chest wall. Two of the symptoms of flail chest are chest pain and shortness of breath.
It occurs when multiple adjacent ribs are broken in multiple places, separating a segment, so a part of the chest wall moves independently. The number of ribs that must be broken varies by differing definitions: some sources say at least two adjacent ribs are broken in at least two places, some require three or more ribs in two or more places. The flail segment moves in the opposite direction to the rest of the chest wall: because of the ambient pressure in comparison to the pressure inside the lungs, it goes in while the rest of the chest is moving out, and vice versa. This so-called "paradoxical breathing" is painful and increases the work involved in breathing.
Flail chest is usually accompanied by a pulmonary contusion, a bruise of the lung tissue that can interfere with blood oxygenation. Often, it is the contusion, not the flail segment, that is the main cause of respiratory problems in people with both injuries.
Surgery to fix the fractures appears to result in better outcomes.
Signs and symptoms include crepitus (a crunching sound made when broken bone ends rub together), pain, tenderness, bruising, and swelling over the fracture site. The fracture may visibly move when the person breathes, and it may be bent or deformed, potentially forming a "step" at the junction of the broken bone ends that is detectable by palpation. Associated injuries such as those to the heart may cause symptoms such as abnormalities seen on electrocardiograms.
The upper and middle parts of the sternum are those most likely to fracture, but most sternal fractures occur below the sternal angle.
Signs and symptoms vary depending on what part of the tracheobronchial tree is injured and how severely it is damaged. There are no direct signs of TBI, but certain signs suggest the injury and raise a clinician's suspicion that it has occurred. Many of the signs and symptoms are also present in injuries with similar injury mechanisms such as pneumothorax. Dyspnea and respiratory distress are found in 76–100% of people with TBI, and coughing up blood has been found in up to 25%. However, isolated TBI does not usually cause profuse bleeding; if such bleeding is observed it is likely to be due to another injury such as a ruptured large blood vessel. The patient may exhibit dysphonia or have diminished breath sounds, and rapid breathing is common. Coughing may be present, and stridor, an abnormal, high-pitched breath sound indicating obstruction of the upper airway can also occur.
Damage to the airways can cause subcutaneous emphysema (air trapped in the subcutaneous tissue of the skin) in the abdomen, chest, neck, and head. Subcutaneous emphysema, present in up to 85% of people with TBI, is particularly indicative of the injury when it is only in the neck. Air is trapped in the chest cavity outside the lungs (pneumothorax) in about 70% of TBI. Especially strong evidence that TBI has occurred is failure of a pneumothorax to resolve even when a chest tube is placed to rid the chest cavity of the air; it shows that air is continually leaking into the chest cavity from the site of the tear. Air can also be trapped in the mediastinum, the center of the chest cavity (pneumomediastinum). If air escapes from a penetrating injury to the neck, a definite diagnosis of TBI can be made. Hamman's sign, a sound of crackling that occurs in time with the heartbeat, may also accompany TBI.
The classic history of esophageal rupture is one of severe retching and vomiting followed by excruciating retrosternal chest and upper abdominal pain. Odynophagia, tachypnea, dyspnea, cyanosis, fever, and shock develop rapidly thereafter.
Physical examination is usually not helpful, particularly early in the course. Subcutaneous emphysema (crepitation) is an important diagnostic finding but is not very sensitive, being present in only 9 of 34 patients (27 percent) in one series. A pleural effusion may be detected.
Mackler's triad includes chest pain, vomiting, and subcutaneous emphysema, and while it is a classical presentation, it is only present in 14% of people.
Pain can occasionally radiate to the left shoulder, causing physicians to confuse an esophageal perforation with a myocardial infarction.
It may also be audibly recognized as Hamman's sign.
Two of the symptoms of flail chest are chest pain and shortness of breath.
The characteristic paradoxical motion of the flail segment occurs due to pressure changes associated with respiration that the rib cage normally resists:
- During normal inspiration, the diaphragm contracts and intercostal muscles pull the rib cage out. Pressure in the thorax decreases below atmospheric pressure, and air rushes in through the trachea. The flail segment will be pulled in with the decrease in pressure while the rest of the rib cage expands.
- During normal expiration, the diaphragm and intercostal muscles relax increasing internal pressure, allowing the abdominal organs to push air upwards and out of the thorax. However, a flail segment will also be pushed out while the rest of the rib cage contracts.
The constant motion of the ribs in the flail segment at the site of the fracture is extremely painful, and, untreated, the sharp broken edges of the ribs are likely to eventually puncture the pleural sac and lung, possibly causing a pneumothorax. The concern about "mediastinal flutter" (the shift of the mediastinum with paradoxical diaphragm movement) does not appear to be merited. Pulmonary contusions are commonly associated with flail chest and that can lead to respiratory failure. This is due to the paradoxical motions of the chest wall from the fragments interrupting normal breathing and chest movement. Typical paradoxical motion is associated with stiff lungs, which requires extra work for normal breathing, and increased lung resistance, which makes air flow difficult. The respiratory failure from the flail chest requires mechanical ventilation and a longer stay in an intensive care unit. It is the damage to the lungs from the flail segment that is life-threatening.
Lesions can be transverse, occurring between the rings of the trachea, longitudinal or spiral. They may occur along the membranous part of the trachea, the main bronchi, or both. In 8% of ruptures, lesions are complex, occurring in more than one location, with more than one type of lesion, or on both of the main bronchi and the trachea. Transverse tears are more common than longitudinal or complex ones. The laceration may completely transect the airway or it may go only partway around. Partial tears that do not go all the way around the circumference of the airway do not allow a lacerated airway to become completely detached; tears that encircle the whole airway can allow separation to occur. Lacerations may also be classified as complete or incomplete. In an incomplete lesion, a layer of tissue surrounding the bronchus remains intact and can keep the air in the airway, preventing it from leaking into the areas surrounding the airways. Incomplete lacerations may require closer scrutiny to detect and may not be diagnosed right away.
Bronchial injuries are divided into those that are accompanied by a disruption of the pleura and those that are not; in the former, air can leak from the hole in the airway and a pneumothorax can form. The latter type is associated with more minor signs; pneumothorax is small if it occurs at all, and although function is lost in the part of the lung supplied by the injured bronchus, unaffected parts of the lungs may be able to compensate.
Most TBI that results from blunt trauma occurs within the chest. The most common tracheal injury is a tear near the carina or in the membranous wall of the trachea. In blunt chest trauma, TBI occurs within 2.5 cm of the carina 40–80% of the time. The injury is more common in the right main bronchus than the left, possibly because the former is near vertebrae, which may injure it. Also, the aorta and other tissues in the mid chest that surround the left main bronchus may protect it. Another possibility is that people with left main bronchus injuries are more likely to also have other deadly injuries and therefore die before reaching hospital, making them less likely to be included in studies that determine rates of injuries.
Hemothorax tends to occur following blunt or penetrating trauma to the thorax or thoracoabdominal area. It may also follow thoracic surgery, or may be spontaneous. Chest pain, dyspnea, and tachypnea are common presenting features. Other symptoms of hemothorax are dependent on the mechanism of injury, but may include:
- Cyanosis
- Decreased or absent breath sounds on affected side
- Tracheal deviation to unaffected side
- Dull resonance on percussion
- Unequal chest rise
- Tachycardia
- Hypotension
- Pale, cool, clammy skin
- Possible subcutaneous emphysema
- Narrowing pulse pressure
As with other types of fractures, scapular fracture may be associated with pain localized to the area of the fracture, tenderness, swelling, and crepitus (the crunching sound of bone ends grinding together). Since scapular fractures impair the motion of the shoulder, a person with a scapular fracture has a reduced ability to move the shoulder joint. Signs and symptoms may be masked by other injuries that accompany the scapular fracture.
Gerodermia osteodysplastica is characterized by symptoms and features which affect the connective tissues, skin and skeletal system.
These are: wrinkly, loose skin over the face, abdomen, and extremites (hands, feet) on the dorsal sides usually worsened by chronic joint laxity and hyperextensibility; fragmented elastic fibers of the skin that are reduced in number, with disorientation of collagen fibers; osteopenia and osteoporosis, with associated fractures; malar hypoplasia (underdeveloped cheek bone), maxillary hypoplasia (underdeveloped upper jaw), mandibular prognathism (protrusion of the lower jaw and chin), bowed long bones, platyspondyly (flattened spine) related to vertebral collapse; kyphoscoliosis (scoliosis with kyphosis, or "hunch back"), metaphyseal peg (an unusual outgrowth of metaphyseal tissue which protrudes into the epiphyseal region of the bone, near the knee); and the overall physical effects and facial appearance of dwarfism with premature aging.
Other features and findings include: intrauterine growth retardation, congenital hip dislocations, winged scapulae (shoulder blades), pes planus (fallen arches), pseudoepiphyses of the second metacarpals (upper bone of the fingers), hypotelorism (close-set eyes), malformed ears,
developmental delay,
failure to thrive and abnormal electroencephalograph (EEG) readings.
Dental and orthodontal abnormalities in addition to maxillary hypoplasia and mandibular prognathism have also been observed in gerodermia osteodysplastica. Including malocclusion of the dental arches (the maxilla and mandible), radiological findings in some cases have indicated significant overgrowth of the mandibular premolar and molar roots;
hypercementosis (overproduction of cementum) of the molars and maxillary incisors; enlarged, funnel-shaped mandibular lingula (spiny structures on the ramus of the mandible); and a radiolucent effect on portions of many teeth, increasing their transparency to x-rays.
MASS syndrome a medical disorder similar to Marfan syndrome.
MASS stands for: mitral valve prolapse, aortic root diameter at upper limits of normal for body size, stretch marks of the skin, and skeletal conditions similar to Marfan syndrome. MASS Phenotype is a connective tissue disorder that is similar to Marfan syndrome. It is caused by a similar mutation in the gene called fibrillin-1 that tells the body how to make an important protein found in connective tissue. This mutation is an autosomal dominant mutation in the FBN1 gene that codes for the extracellular matrix protein fibrillin-1; defects in the fibrillin-1 protein cause malfunctioning microfibrils that result in improper stretching of ligaments, blood vessels, and skin.
Someone with MASS phenotype has a 50 percent chance of passing the gene along to each child.
People with features of MASS Phenotype need to see a doctor who knows about connective tissue disorders for an accurate diagnosis; often this will be a medical geneticist. It is very important that people with MASS Phenotype get an early and correct diagnosis so they can get the right treatment. Treatment options for MASS phenotype are largely determined on a case-by-case basis and generally address the symptoms as opposed to the actual disorder; furthermore, due to the similarities between these two disorders, individuals with MASS phenotype follow the same treatment plans as those with Marfan syndrome.
MASS stands for the Mitral valve, myopia, Aorta, Skin and Skeletal features of the disorder. MASS Phenotype affects different people in different ways.
In MASS Phenotype:
Mitral valve prolapse may be present. This is when the flaps of one of the heart’s valves (the mitral valve, which regulates blood flow on the left side of the heart) are “floppy” and don’t close tightly. Aortic root diameter may be at the upper limits of normal for body size, but unlike Marfan syndrome there is not progression to aneurysm or predisposition to dissection. Skin may show stretch marks unrelated to weight gain or loss (striae). Skeletal features, including curvature of the spine (scoliosis), chest wall deformities, and joint hypermobility, may be present. People with MASS Phenotype do not have lens dislocation but have myopia, also known as nearsightedness.
MASS syndrome and Marfan syndrome are overlapping connective tissue disorders. Both can be caused by mutations in the gene encoding a protein called fibrillin. These conditions share many of the same signs and symptoms including long limbs and fingers, chest wall abnormalities (indented chest bone or protruding chest bone), flat feet, scoliosis, mitral valve prolapse, loose or hypextensible joints, highly arched roof of the mouth, and mild dilatation of the aortic root.
Individuals with MASS syndrome do not have progressive aortic enlargement or lens dislocation, while people with Marfan syndrome do. Skin involvement in MASS syndrome is typically limited to stretch marks (striae distensae). Also, the skeletal symptoms of MASS syndrome are generally mild.