Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Neuritis is a general term for inflammation of a nerve or the general inflammation of the peripheral nervous system. Symptoms depend on the nerves involved, but may include pain, paresthesia (pins-and-needles), paresis (weakness), hypoesthesia (numbness), anesthesia, paralysis, wasting, and disappearance of the reflexes.
Causes of neuritis include:
Those with diseases or dysfunctions of their nerves may present with problems in any of the normal nerve functions. Symptoms vary depending on the types of nerve fiber involved.In terms of sensory function, symptoms commonly include loss of function ("negative") symptoms, including , tremor, impairment of balance, and gait abnormality. Gain of function (positive) symptoms include tingling, pain, itching, crawling, and pins-and-needles.
Motor symptoms include loss of function ("negative") symptoms of weakness, tiredness, muscle atrophy, and gait abnormalities; and gain of function ("positive") symptoms of cramps, and muscle twitch (fasciculations).
In the most common form, length-dependent peripheral neuropathy, pain and parasthesia appears symmetrically and generally at the terminals of the longest nerves, which are in the lower legs and feet. Sensory symptoms generally develop before motor symptoms such as weakness. Length-dependent peripheral neuropathy symptoms make a slow ascent of leg, while symptoms may never appear in the upper limbs; if they do, it will be around the time that leg symptoms reach the knee. When the nerves of the autonomic nervous system are affected, symptoms may include constipation, dry mouth, difficulty urinating, and dizziness when standing.
Major symptoms are sudden loss of vision (partial or complete), sudden blurred or "foggy" vision, and pain on movement of the affected eye. Early symptoms that require investigation include symptoms from multiple sclerosis (twitching, lack of coordination, slurred speech, frequent episodes of partial vision loss or blurred vision), episodes of "disturbed/blackened" rather than blurry indicate moderate stage and require immediate medical attention to prevent further loss of vision. Other early symptoms are reduced night vision, photophobia and red eyes. Many patients with optic neuritis may lose some of their color vision in the affected eye (especially red), with colors appearing subtly washed out compared to the other eye. Patients may also experience difficulties judging movement in depth which can be particular troublesome during driving or sport (Pulfrich effect). Likewise transient worsening of vision with increase of body temperature (Uhthoff's phenomenon) and glare disability are a frequent complaint. However, several case studies in children have demonstrated the absence of pain in more than half of cases (approximately 60%) in their pediatric study population, with the most common symptom reported simply as "blurriness." Other remarkable differences between the presentation of adult optic neuritis as compared to pediatric cases include more often unilateral optic neuritis in adults, while children much predominantly present with bilateral involvement.
On medical examination the head of the optic nerve can easily be visualized by a slit lamp with high plus or by using direct ophthalmoscopy; however, frequently there is no abnormal appearance of the nerve head in optic neuritis (in cases of retrobulbar optic neuritis), though it may be swollen in some patients (anterior papillitis or more extensive optic neuritis). In many cases, only one eye is affected and patients may not be aware of the loss of color vision until they are asked to close or cover the healthy eye.
AON was first described in 1982. It presents with visual loss and signs of optic nerve dysfunction, such as loss of color vision, afferent pupil defect, and sometimes abnormalities of the optic disc. The clinical features of AON can be variable and present in several unilateral or bilateral forms:
- Acute anterior or retrobulbar optic neuritis sometimes associated with pain.
- Anterior or retrobulbar ischemic optic neuropathy not associated with pain.
- Chronic progressive vision loss that mimics a compressive lesion.
The main features that differentiate AON from the more common typical demyelinating optic neuritis is the poor recovery of vision and the chronic or recurrent or bilateral course of AON. Furthermore, the workup for multiple sclerosis including MRI, will be negative. Thus, it may be necessary to diagnose AON after a period of observation, noting the problem is not behaving as expected for demyelinative disease.
Optic neuritis is a demyelinating inflammation of the optic nerve. It is also known as optic papillitis (when the head of the optic nerve is involved) and retrobulbar neuritis (when the posterior part of the nerve is involved). It is most often associated with multiple sclerosis, and it may lead to complete or partial loss of vision in one or both eyes.
Partial, transient vision loss (lasting less than one hour) can be an indication of early onset multiple sclerosis. Other possible diagnoses include: diabetes mellitus, low phosphorus levels, or hyperkalaemia.
Autoimmune optic neuropathy (AON), sometimes called autoimmune optic neuritis, may be a forme fruste of systemic lupus erythematosus (SLE) associated optic neuropathy. AON is more than the presence of any optic neuritis in a patient with an autoimmune process, as it describes a relatively specific clinical syndrome. AON is characterized by chronically progressive or recurrent vision loss associated with serological evidence of autoimmunity. Specifically, this term has been suggested for cases of optic neuritis with serological evidence of vasculitis by positive ANA, despite the lack of meeting criteria for SLE. The clinical manifestations include progressive vision loss that tends to be steroid-responsive and steroid dependent.
Patients with defined SLE that go on to develop optic neuritis should be better identified as lupus optic neuritis.
Neuritis () is inflammation of a nerve or the general inflammation of the peripheral nervous system. Symptoms depend on the nerves involved but may include pain, paresthesia (pins-and-needles), paresis (weakness), hypoesthesia (numbness), anesthesia, paralysis, wasting, and disappearance of the reflexes.
The main symptoms of Devic's disease are loss of vision and spinal cord function. Optic neuritis may manifest as visual impairment with decreased visual acuity, although visual field defects, or loss of color vision may occur in isolation or prior to formal loss of acuity. Spinal cord dysfunction can lead to muscle weakness, reduced sensation, or loss of bladder and bowel control. The typical patient has an acute and severe spastic weakness of the legs (paraparesis) or all four limbs (quadriparesis) with sensory signs, often accompanied by loss of bladder control.
Optic neuritis is inflammation of the optic nerve, which is associated with swelling and destruction of the myelin sheath covering the optic nerve. Young adults, usually females, are most commonly affected. Symptoms of optic neuritis in the affected eye include pain on eye movement, sudden loss of vision, and decrease in color vision (especially reds). Optic neuritis, when combined with the presence of multiple demyelinating white matter brain lesions on MRI, is suspicious for multiple sclerosis.
Several causes and clinical courses are possible for the optic neuritis. It can be classified in:
- Single isolated optic neuritis (SION)
- relapsing isolated optic neuritis (RION)
- chronic relapsing inflammatory optic neuropathy (CRION)
- the neuromyelitis optica (NMO) spectrum disorder
- multiple sclerosis associated optic neuritis (MSON)
- unclassified optic neuritis (UCON) forms.
Medical examination of the optic nerve with an ophthalmoscope may reveal a swollen optic nerve, but the nerve may also appear normal. Presence of an afferent pupillary defect, decreased color vision, and visual field loss (often central) are suggestive of optic neuritis. Recovery of visual function is expected within 10 weeks. However, attacks may lead to permanent axonal loss and thinning of the retinal nerve fiber layer.
Tumors, infections, and inflammatory processes can cause lesions within the orbit and, less commonly, the optic canal. These lesions may compress the optic nerve, resulting optic disc swelling and progressive visual loss. Implicated orbital disorders include optic gliomas, meningiomas, hemangiomas, lymphangiomas, dermoid cysts, carcinoma, lymphoma, multiple myeloma, inflammatory orbital pseudotumor, and thyroid ophthalmopathy. Patients often have bulging out of the eye (proptosis) with mild color deficits and almost normal vision with disc swelling.
Neuromyelitis optica (NMO), also known as Devic's disease or Devic's syndrome, is a heterogeneous condition consisting of the simultaneous inflammation and demyelination of the optic nerve (optic neuritis) and the spinal cord (myelitis). It can be monophasic or recurrent.
Currently at least two different causes are proposed based on the presence of autoantibodies against AQP4. AQP4+ NMO is currently considered an autoimmune disease (autoimmune astrocytopathy, or autoimmune astrocytic channelopathy) in which a person's own immune system attacks the astrocytes of the optic nerves and spinal cord. The cause of the AQP4− variants is unknown.
Although inflammation may also affect the brain, the lesions are different from those observed in the related condition, multiple sclerosis. Spinal cord lesions lead to varying degrees of weakness or paralysis in the legs or arms, loss of sensation (including blindness), and/or bladder and bowel dysfunction.
Devic's disease is now studied along a collection of similar diseases called "Neuromyelitis optica spectrum diseases". Some cases of this spectrum resemble multiple sclerosis (MS) in several ways, but require a different course of treatment for optimal results.
In 2004, NMO-IgG (currently known as Anti-AQP IgG) was first described leading to the distinction between positive and negative cases.
In Anti-AQP positive variants, CNS astrocytes, which are the basis for the glymphatic system are the target of the autoimmune attack. NMO-IgG-negative cases are less understood. It seems currently that astrocytes are spared in these IgG negative cases.
The demyelinating diseases of the peripheral nervous system include:
- Guillain–Barré syndrome and its chronic counterpart, chronic inflammatory demyelinating polyneuropathy
- Anti-MAG peripheral neuropathy
- Charcot–Marie–Tooth disease and its counterpart Hereditary neuropathy with liability to pressure palsy
- Copper deficiency associated conditions (peripheral neuropathy, myelopathy, and rarely optic neuropathy)
- Progressive inflammatory neuropathy
Optic papillitis is a specific type of optic neuritis. Inflammation of the optic nerve head is called "papillitis" or "intraocular optic neuritis"; inflammation of the orbital portion of the nerve is called "retrobulbar optic neuritis" or "orbital optic neuritis". It is often associated with substantial losses in visual fields, pain on moving the globe, and sensitivity to light pressure on the globe. It is often an early sign of multiple sclerosis.
Papillitis may have the same appearance as papilledema. However, papillitis may be unilateral, whereas papilledema is almost always bilateral. Papillitis can be differentiated from papilledema by an afferent pupillary defect (Marcus Gunn pupil), by its greater effect in decreasing visual acuity and color vision, and by the presence of a central scotoma. Papilledema that is not yet chronic will not have as dramatic an effect on vision. Because increased intracranial pressure can cause both papilledema and a sixth (abducens) nerve palsy, papilledema can be differentiated from papillitis if esotropia and loss of abduction are also present. However, esotropia may also develop secondarily in an eye that has lost vision from papillitis. Retrobulbar neuritis, an inflamed optic nerve, but with a normal-appearing nerve head, is associated with pain and the other findings of papillitis. Pseudopapilledema is a normal variant of the optic disk, in which the disk appears elevated, with indistinct margins and a normal vascular pattern. Pseudopapilledema sometimes occurs in hyperopic individuals.
Workup of the patient with papillitis includes lumbar puncture and cerebrospinal fluid analysis. B henselae infection can be detected by serology. MRI is the preferred imaging study. An abnormal MRI is associated with a worse visual outcome.
A demyelinating disease is any disease of the nervous system in which the myelin sheath of neurons is damaged. This damage impairs the conduction of signals in the affected nerves. In turn, the reduction in conduction ability causes deficiency in sensation, movement, cognition, or other functions depending on which nerves are involved.
Some demyelinating diseases are caused by genetics, some by infectious agents, some by autoimmune reactions, and some by unknown factors. Organophosphates, a class of chemicals which are the active ingredients in commercial insecticides such as sheep dip, weed-killers, and flea treatment preparations for pets, etc., will also demyelinate nerves. Neuroleptics can also cause demyelination.
Demyelinating diseases are traditionally classified in two kinds: demyelinating myelinoclastic diseases and demyelinating leukodystrophic diseases. In the first group a normal and healthy myelin is destroyed by a toxic, chemical or autoimmune substance. In the second group, myelin is abnormal and degenerates. The second group was denominated dysmyelinating diseases by Poser
In the most known example, multiple sclerosis, there is good evidence that the body's own immune system is at least partially responsible. Acquired immune system cells called T-cells are known to be present at the site of lesions. Other immune system cells called Macrophages (and possibly Mast cells as well) also contribute to the damage.
Vitamin B12 deficiency can cause demyelination.
This is the least severe form of nerve injury, with complete recovery. In this case, the axon remains intact, but there is myelin damage causing an interruption in conduction of the impulse down the nerve fiber. Most commonly, this involves compression of the nerve or disruption to the blood supply (ischemia). There is a temporary loss of function which is reversible within hours to months of the injury (the average is 6–9 weeks). Wallerian degeneration does not occur, so recovery does not involve actual regeneration. There is frequently greater involvement of motor than sensory function with autonomic function being retained. In electrodiagnostic testing with nerve conduction studies, there is a normal compound motor action potential amplitude distal to the lesion at day 10, and this indicates a diagnosis of mild neuropraxia instead of axonotmesis or neurotmesis.
In a pure lesion of the anterior interosseous nerve there may be weakness of the long flexor muscle of the thumb (Flexor pollicis longus), the deep flexor muscles of the index and middle fingers (Flexor digitorum profundus I & II), and the pronator quadratus muscle.
There is little sensory deficit since the anterior interosseous nerve has no cutaneous branch.
Most patients experience poorly localised pain in the forearm. The pain is sometimes referred into the cubital fossa and elbow pain has been reported as being a primary complaint.
The characteristic impairment of the pincer movement of the thumb and index finger is most striking.
The sequence of clinical events in VKH is divided into four phases: prodromal, acute uveitic, convalescent, and chronic recurrent.
The prodromal phase may have no symptoms, or may mimic a non-specific viral infection, marked by flu-like symptoms that typically last for a few days. There may be fever, headache, nausea, meningismus, dysacusia (discomfort caused by loud noises or a distortion in the quality of the sounds being heard), tinnitus, and/or vertigo. Eye symptoms can include orbital pain, photophobia and tearing. The skin and hair may be sensitive to touch. Cranial nerve palsies and optic neuritis are uncommon.
The acute uveitic phase occurs a few days later and typically lasts for several weeks. This phase is heralded by bilateral panuveitis causing blurring of vision. In 70% of VKH, the onset of visual blurring is bilaterally contemporaneous; if initially unilateral, the other eye is involved within several days. The process can include bilateral granulomatous anterior uveitis, variable degree of vitritis, thickening of the posterior choroid with elevation of the peripapillary retinal choroidal layer, optic nerve hyperemia and papillitis, and multiple exudative bullous serous retinal detachments.
The convalescent phase is characterized by gradual tissue depigmentation of skin with vitiligo and poliosis, sometimes with nummular depigmented scars, as well as alopecia and diffuse fundus depigmentation resulting in a classic orange-red discoloration ("sunset glow fundus") and retinal pigment epithelium clumping and/or migration.
The chronic recurrent phase may be marked by repeated bouts of uveitis, but is more commonly a chronic, low-grade, often subclinical, uveitis that may lead to granulomatous anterior inflammation, cataracts, glaucoma and ocular hypertension. Full-blown recurrences are, however, rare after the acute stage is over. Dysacusia may occur in this phase.
In general, ulnar neuropathy will result in symptoms in a specific anatomic distribution, affecting the little finger, the ulnar half of the ring finger, as well as the intrinsic muscles of the hand.
The specific symptoms experienced in the characteristic distribution depend on the specific location of ulnar nerve impingement. Symptoms of ulnar neuropathy may be motor, sensory, or both depending on the location of injury. Motor symptoms consistent of muscle weakness; sensory symptoms or paresthesias consist of numbness or tingling in the areas innervated by the ulnar nerve.
- Proximal impingement is associated with mixed symptoms, as the proximal nerve consists of mixed sensory and motor innervation.
- Distal impingement is associated with variable symptoms, as the ulnar nerve separates near the hand into distinct motor and sensory branches.
In cubital tunnel syndrome (a proximal impingement), sensory and motor symptoms tend to occur in a certain sequence. Initially, there may be numbness of the small and ulnar fourth finger which may be transient. If the impingement is not corrected, the numbness may become constant and progress to hand weakness. A characteristic resting hand position of "ulnar claw," where the small and ring fingers curl up, occurs late in the disease and is a sign of severe neuropathy.
By contrast, in Guyon's canal syndrome (distal impingement) motor symptoms and claw hand may be more pronounced, a phenomenon known as the ulnar paradox. Also the back of the hand will have normal sensation.
As a result of lower motor neurone degeneration, the symptoms of PMA include:
- atrophy
- fasciculations
- muscle weakness
Some patients have symptoms restricted only to the arms or legs (or in some cases just one of either). These cases are referred to as "Flail Arm" (FA) or "Flail Leg" (FL) and are associated with a better prognosis.
The disease is characterised by bilateral diffuse uveitis, with pain, redness and blurring of vision. The eye symptoms may be accompanied by a varying constellation of systemic symptoms, such as auditory (tinnitus, vertigo, and hypoacusis), neurological (meningismus, with malaise, fever, headache, nausea, abdominal pain, stiffness of the neck and back, or a combination of these factors; meningitis, CSF pleocytosis, cranial nerve palsies, hemiparesis, transverse myelitis and ciliary ganglionitis), and cutaneous manifestations, including poliosis, vitiligo, and alopecia. The vitiligo often is found at the sacral region.
The first symptoms of Guillain–Barré syndrome are numbness, tingling, and pain, alone or in combination. This is followed by weakness of the legs and arms that affects both sides equally and worsens over time. The weakness can take half a day to over two weeks to reach maximum severity, and then becomes steady. In one in five people, the weakness continues to progress for as long as four weeks. The muscles of the neck may also be affected, and about half experience involvement of the cranial nerves which supply the head and face; this may lead to weakness of the muscles of the face, swallowing difficulties and sometimes weakness of the eye muscles. In 8%, the weakness affects only the legs (paraplegia or paraparesis). Involvement of the muscles that control the bladder and anus is unusual. In total, about a third of people with Guillain–Barré syndrome continue to be able to walk. Once the weakness has stopped progressing, it persists at a stable level ("plateau phase") before improvement occurs. The plateau phase can take between two days and six months, but the most common duration is a week. Pain-related symptoms affect more than half, and include back pain, painful tingling, muscle pain and pain in the head and neck relating to irritation of the lining of the brain.
Many people with Guillain–Barré syndrome have experienced the signs and symptoms of an infection in the 3–6 weeks prior to the onset of the neurological symptoms. This may consist of upper respiratory tract infection (rhinitis, sore throat) or diarrhea.
In children, particularly those younger than six years old, the diagnosis can be difficult and the condition is often initially mistaken (sometimes for up to two weeks) for other causes of pains and difficulty walking, such as viral infections, or bone and joint problems.
On neurological examination, characteristic features are the reduced power and reduced or absent tendon reflexes (hypo- or areflexia, respectively). However, a small proportion has normal reflexes in affected limbs before developing areflexia, and some may have exaggerated reflexes. In the "Miller Fisher variant" subtype of Guillain–Barré syndrome (see below), a triad of weakness of the eye muscles, abnormalities in coordination, as well as absent reflexes can be found. The level of consciousness is normally unaffected in Guillain–Barré syndrome, but the Bickerstaff brainstem encephalitis subtype may feature drowsiness, sleepiness, or coma.
In contrast to amyotrophic lateral sclerosis or primary lateral sclerosis, PMA is distinguished by the "absence" of:
- brisk reflexes
- spasticity
- Babinski's sign
- Emotional lability
Nerve injury is injury to nervous tissue. There is no single classification system that can describe all the many variations of nerve injury. In 1941, Seddon introduced a classification of nerve injuries based on three main types of nerve fiber injury and whether there is continuity of the nerve. Usually, however, (peripheral) nerve injury is classified in five stages, based on the extent of damage to both the nerve and the surrounding connective tissue, since supporting glial cells may be involved. Unlike in the central nervous system, neuroregeneration in the peripheral nervous system is possible. The processes that occur in peripheral regeneration can be divided into the following major events: Wallerian degeneration, axon regeneration/growth, and nerve reinnervation. The events that occur in peripheral regeneration occur with respect to the axis of the nerve injury. The proximal stump refers to the end of the injured neuron that is still attached to the neuron cell body; it is the part that regenerates. The distal stump refers to the end of the injured neuron that is still attached to the end of the axon; it is the part of the neuron that will degenerate but that remains in the area toward which the regenerating axon grows. The study of peripheral nerve injury began during the American Civil War and has greatly expanded to the point of using growth-promoting molecules.
A quarter of all people with Guillain–Barré syndrome develop weakness of the breathing muscles leading to respiratory failure, the inability to breathe adequately to maintain healthy levels of oxygen and/or carbon dioxide in the blood. This life-threatening scenario is complicated by other medical problems such as pneumonia, severe infections, blood clots in the lungs and bleeding in the digestive tract in 60% of those who require artificial ventilation.