Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Elephants with floppy trunk syndrome typically initially exhibit a loss of their trunk's prehensile abilities. The paralysis has been observed to start at the tip and work its way upward over the course of several months. As their trunks become increasingly paralyzed, elephants have difficulty feeding and learn to use their front feet or throw their trunk over branches to aid feeding. To avoid stomping on their trunk while walking, an elephant afflicted with the condition would fling their trunk over their tusks. In later stages of paralysis, affected elephants needed to submerge themselves partially in water to drink. However, despite these learned adaptations, affected elephants were observed as emaciated, suffering from muscle atrophy and a lack of visceral fat. Untreated, this handicap could result in starvation.
Floppy trunk syndrome (abbreviated FTS, also known as flaccid trunk paralysis) is a condition that causes trunk paralysis in African bush elephants. Initially observed in 1989, the syndrome primarily affected bull elephants in several select regions in Zimbabwe. Afflicted elephants exhibit paralysis in their trunk, often having to adapt to feed. The loss of their trunks' prehensile abilities results in malnutrition and possibly death. The condition is a result of degeneration of nerves in the trunk, and is suggested to be a result of either heavy metals or toxins. There is debate over whether the condition is reversible.
Limber tail syndrome, or acute caudal myopathy, is a disorder of the muscles in the tail, usually affecting working dogs.
It is an injury occurring mostly in sporting or working dogs such as English Pointers, English Setters, Foxhounds, Beagles, and Labrador Retrievers. Limber tail syndrome is also known as swimmer's tail, cold water tail, broken tail, dead tail, "happy tail" or broken wag.
It has been said by many dog owners that limber tail had been caused shortly (24 hours) after swimming in water that is too cold or on rare occasions too warm and indeed this has certainly produced this very condition. The actual cause is unknown but it may be caused by the narrowing of the space through which the spinal cord passes, typically due to degenerative change to the intervertebral disk spaces. These underlying changes may not lead to visible change until the problem is suddenly exacerbated, such as during physical activity, after trauma, etc. Occasionally other changes are seen prior to or in conjunction with limber tail disease, such as urinary or fecal incontinence, postural abnormalities in the pelvic limb, or pain in response to touching the lower back.
The onset of paralysis (spastic paraparesis) is sudden and symmetrical and affects the legs more than the arms. The resulting disability is permanent but does not progress. Typically, a patient is standing and walking on the balls of the feet with rigid legs and often with ankle clonus.
Initially, most patients experience generalized weakness during the first days and are bedridden for some days or weeks before trying to walk. Occasional blurred vision and/or speech difficulties typically clear during the first month, except in severely affected patients. Spasticity is present from the first day, without any initial phase of flaccidity. After the initial weeks of functional improvement, the spastic paraparesis remains stable for the rest of life. Some patients may suffer an abrupt aggravating episode, e.g. a sudden and permanent worsening of the spastic paraparesis. Such episodes are identical to the initial onset and can therefore be interpreted as a "second onset".
The severity of konzo varies; cases range from only hyperreflexia in the lower limbs to a severely disabled, bedridden patient with spastic paraparesis, associated weakness of the trunk and arms, impaired eye movements, speech and possibly visual impairment. Although the severity varies from patient to patient, the longest upper motor neurons are invariably more affected than the shorter ones. Thus, a konzo patient with speech impairment always shows severe symptoms in the legs and arms.
Recently, neuropsychological effects of konzo have been described from DR Congo.
The WHO has recommended three criteria for the diagnosis of konzo:
- a visible symmetric spastic abnormality of gait while walking or running;
- a history of onset of less than one week followed by a non-progressive course in a formerly healthy person;
- bilaterally exaggerated knee or ankle jerk reflexes without signs of disease of the spine.
Depending on its severity, konzo is divided into three categories: mild when individuals are able to walk without support, moderate when individuals need one or two sticks to walk, and severe when the affected person is unable to walk unsupported.
Neurological abnormalities are common. Roughly 45% of people with Parry–Romberg syndrome are also afflicted with trigeminal neuralgia (severe pain in the tissues supplied by the ipsilateral trigeminal nerve, including the forehead, eye, cheek, nose, mouth and jaw) and/or migraine (severe headaches that may be accompanied by visual abnormalities, nausea and vomiting).
10% of affected individuals develop a seizure disorder as part of the disease. The seizures are typically Jacksonian in nature (characterized by rapid spasms of a muscle group that subsequently spread to adjacent muscles) and occur on the side contralateral to the affected side of the face. Half of these cases are associated with abnormalities in both the gray and white matter of the brain—usually ipsilateral but sometimes contralateral—that are detectable on magnetic resonance imaging (MRI) scan.
Enophthalmos (recession of the eyeball within the orbit) is the most common eye abnormality observed in Parry–Romberg syndrome. It is caused by a loss of subcutaneous tissue around the orbit. Other common findings include drooping of the eyelid (ptosis), constriction of the pupil (miosis), redness of the conjunctiva, and decreased sweating (anhidrosis) of the affected side of the face. Collectively, these signs are referred to as Horner's syndrome. Other ocular abnormalities include ophthalmoplegia (paralysis of one or more of the extraocular muscles) and other types of strabismus, uveitis, and heterochromia of the iris.
Avellis syndrome is a neurological disorder characterized by a peculiar form of alternating paralysis. There is paralysis of the soft palate and vocal cords on one side and loss of pain sensation and temperature sense on the other side, including the extremities, trunk, and neck. It usually results from occlusion of the vertebral artery in lesions of the nucleus ambiguous and pyramidal tract. Horner's syndrome may be associated. In the original description, the vagus and glossopharyngeal nerves were involved; concomitant involvement of the neighbouring cranial nerves was observed later.
FLD produces rapidly progressive weakness of tongue, face and pharyngeal muscles in a clinical pattern similar to myasthenia. Neuromuscular transmission may be abnormal in these muscles because of rapid denervation and immature reinnervation. Paralysis occurs secondary to degeneration of the motor neurons of the brain stem. It causes progressive bulbar paralysis due to involvement of motor neurons of the cranial nerve nuclei. The most frequent symptoms at onset of progressive bulbar paralysis of childhood has been a unilateral facial paralysis. It is followed in frequency by dysarthria due to facial weakness or by dysphagia. Palatal weakness and palpebral ptosis also have been reported in few patients. Both sexes can be affected.
The syndrome typically presents as a progressive flaccid symmetric paralysis with areflexia, often causing respiratory failure. Electromyographic studies and nerve conduction studies show normal motor conduction velocity and latency with decreased amplitude of compound muscle action potentials. F wave and sensory nerve action potentials are often normal in this illness. Pathologically, it is a noninflammatory axonopathy without demyelination. Antibodies attack the coating of the motor neurons without causing inflammation or loss of myelin. It does not affect sensory neurons, so sensation remains intact despite loss of movement.
Signs of laryngeal paralysis include voice change (the dog's bark becomes hoarse-sounding), gagging or coughing (often during or after eating or drinking), exercise intolerance, inspiratory stridor (noisy breathing on inspiration), difficulty breathing, and in severe cases cyanosis or syncope (fainting). Secondary problems may also occur, including aspiration or edema in the lungs, though often the problem remains an upper respiratory problem. Affected dogs are vulnerable to heat stroke and heat exhaustion due to their limited ability to cool themselves down by panting, but the disorder itself can be mistaken for heat stroke.
Signs may occur at any time, but initially owners may only notice that their dog's bark sounds different, that their dog can't run as much as before, or that the dog has trouble in hot weather in unilateral cases because the unaffected side can compensate for the paralysed side. However most unilateral cases will eventually progress to include both sides of the larynx, a more serious problem with symptoms appearing more often.
Signs are usually worse in hot and humid weather, during exercise, during times of stress or excitement, and in obese pets. Acute or late-stage symptoms are usually unmistakable and require immediate emergency treatment.
People with CIP/CIM have diffuse, symmetric, flaccid muscle weakness. CIP/CIM typically develops in the setting of a critical illness and immobilization, so patients with CIP/CIM are often receiving treatment in the intensive care unit (ICU).
Weakness (motor deficits) occurs in generalized fashion, rather than beginning in one region of the body and spreading. Limb and respiratory (diaphragm) muscles are especially affected. The muscles of the face are usually spared, but in rare cases, the eye muscles may be weakened, leading to ophthalmoplegia.
Respiratory difficulties can be caused by atrophy of the muscles between the ribs (intercostals), atrophy of the diaphragm muscle, and degeneration of the nerve that stimulates the diaphragm (phrenic nerve). This can prolong the time the wean a person off of a breathing machine (mechanical ventilation) by as much as 7 – 13 days.
Deep tendon reflexes may be lost or diminished, and there may be bilateral symmetric flaccid paralysis of the arms and legs. The nervous system manifestations are typically limited to peripheral nerves, as the central nervous system is usually unaffected.
In most cases, the cause of laryngeal paralysis is unknown or idiopathic. However, the disorder may arise secondary to general neuropathies, generalized neuromuscular diseases, muscular diseases, neoplasia either in the cervical (neck) region or the cranial mediastinum, or trauma. This acquired form occurs predominantly in middle-aged to old large breed or giant breed dogs such as the Labrador Retriever, golden retriever, Siberian Husky, Newfoundland, and St. Bernard. Usually these dogs are born with a normal larynx, but over time the nerves and muscles that control the laryngeal cartilages lose function.
Laryngeal paralysis may also be congenital in some breeds (e.g. Bouvier des Flandres, Dalmatians, Siberian huskies, and bulldogs), appearing in dogs between two and six months of age. Affected puppies may have difficulty swallowing and breathing, they may gag frequently, and their bark often sounds abnormal. In Dalmatians it is part of another condition called 'laryngeal paralysis-polyneuropathy complex.' Affected puppies should not be used for breeding.
Choke collars are not thought to be a significant risk factor for this disorder. However, after LP is diagnosed it is usually recommended to stop using a collar or anything else around the dog's neck and to switch to a harness instead.
Onset of first symptom has been reported between 1–12 years, with a mean age of onset at 8 years. Clinical course can be divided into early (< 6 yrs age, predominance of respiratory symptoms) and late course (6–20 years of age, predominance of motor symptoms on superior limbs). Progression to involve other cranial nerve muscles occurs over a period of months or years. In the Gomez review facial nerve was affected in all cases while hypoglossal nerve was involved in all except one case. Other cranial nerves involved were vagus, trigeminal, spinal accessory nerve, abducent, occulomotor and glossopharyngeal in this order. Corticospinal tract signs were found in 2 of the 14 patients.
The disease may progress to patient's death in a period as short as 9 months or may have a slow evolution or may show plateaus. Post mortem examination of cases have found depletion of nerve cells in the nuclei of cranial nerves. The histologic alterations found in patient with Fazio–Londe disease were identical to those seen in infantile-onset spinal muscular atrophy.
Strength may improve with administration of cholinesterase inhibitors.
A number of terms are used to describe critical illness polyneuropathy, partially because there is often neuropathy and myopathy in the same person, and nerve and muscle degeneration are difficult to distinguish from each other in this condition. Terms used for the condition include: critical illness polyneuromyopathy, critical illness neuromyopathy, and critical illness myopathy and neuropathy (CRIMYNE). Bolton's neuropathy is an older term, which is no longer used.
The appearance of the affected arm (or arms) depends on the individual case. In some cases the arm may lack the ability to straighten or rotate but otherwise function normally giving the overall appearance of the arm to be stiff and crooked. Whereas in other circumstances the arm has little to no control and has a "loose" appearance. Treatment such as physiotherapy, massage and electrical stimulation can help to prevent this early on (or throughout) the patient's life by strengthening the arm.
In some cases, again, individuals may suffer a great deal of discomfort. For example, they may experience a severe cramping pain that lasts for some time and is particularly painful after they have slept, running from the shoulder all the way down to the wrist. Although pain does not affect everyone with Erb's Palsy, it can be extremely uncomfortable to those that it does and can even cause patients to be physically sick or faint. This extreme nerve pain is mostly common during the final stages of growth and almost always eases off in time. Other pains that Erb's Palsy sufferers might endure include strained muscle, stiffness, circulatory problems and cramp. Different factors are dependent on the severity of the condition and can vary, so whilst some patient experience a lot of pain, some patients may experience no pain at all and for their affected arm to simply be visually crooked.
Discomfort with the shoulder blade is also extremely common in Erb's palsy as the shoulder is often at risk of dislocation. This can result, again, in sickness or lack of sleep.
Periodic paralysis (also known as myoplegia paroxysmalis familiaris) is a group of rare genetic diseases that lead to weakness or paralysis from common triggers such as cold, heat, high carbohydrate meals, not eating, stress or excitement and physical activity of any kind. The underlying mechanism of these diseases are malfunctions in the ion channels in skeletal muscle cell membranes that allow electrically charged ions to leak in or out of the muscle cell, causing the cell to depolarize and become unable to move.
The symptoms of periodic paralysis can also be caused by hyperthyroidism, and are then labeled thyrotoxic periodic paralysis; however, if this is the underlying condition there are likely to be other characteristic manifestations, enabling a correct diagnosis.
Weber's syndrome (also known as superior alternating hemiplegia) has a few distinct symptoms: contralateral hemiparesis of limb and facial muscle accompanied by weakness in one or more muscles that control eye movement on the same side. Another symptom that appears is the loss of eye movement due to damage to the oculomotor nerve fibers. The upper and lower extremities have increased weakness.
A link to "Campylobacter jejuni" was suspected when a young girl was admitted to Second Teaching Hospital. She had become ill after feeding the family chickens. She developed acute paralysis and respiratory failure. Investigators discovered that several of the chickens in the home displayed similar symptoms and "C. jejuni" was found in their droppings. Several of the paralysis patients were found to have antibodies to "C. jejuni" and anti-GD1a antibodies, suggesting a link between the pathogen and the disease. In 2015, Zika virus was linked to AMAN.
Somatoparaphrenia is a type of monothematic delusion where one denies ownership of a limb or an entire side of one's body. Even if provided with undeniable proof that the limb belongs to and is attached to their own body, the patient produces elaborate confabulations about whose limb it really is, or how the limb ended up on their body. In some cases, delusions become so elaborate that a limb may be treated and cared for as if it were a separate being.
Somatoparaphrenia differs from a similar disorder, asomatognosia, which is characterized as loss of recognition of half of the body or a limb, possibly due to paralysis or unilateral neglect. For example, asomatognosic patients may mistake their arm for the doctor's. However, they can be shown their limb and this error is temporarily corrected.
Somatoparaphrenia has been reported to occur predominately in the left arm of one's body, and it is often accompanied by left-sided paralysis and anosognosia (denial or lack of awareness) of the paralysis. The link between somatoparaphrenia and paralysis has been documented in many clinical cases and while the question arises as to whether paralysis is necessary for somatoparaphrenia to occur, anosognosia is not, as documented by cases with somatoparaphrenia and paralysis with no anosognosia.
Damage to the peripheral nerves coming from the legs to the somatosensory area is the leading candidate for the cause of astasis. These damaged nerves prevent feedback for stabilization of posture for patients with astasis. This causes a disturbance in postural movements, such as a swaying around the legs and hip joints. This swaying may be seen only when a patient in standing still, and may disappear before walking, indicating that these patients exhibit astasia without abasia. This impairment of sensation is not always required for the sensation to develop. However, impairment often worsens astasia.
Since astasis itself is more a symptom than a disease, it is more often seen associated with other signs and symptoms. People who have astasis often experience
- Odd gyrations
- Tightrope balancing deficits (in which a person attempts to balance on a tightrope in order to test balance and motor coordination)
- Near falling deficits (which is a test in which the patient is slightly pushed in order to check their ability to regain posture)
- Exaggerated effort deficits (which is an overcompensation test used to determine motor coordination ability)
- Atypical postures and weakness
- Paralysis
- Jumping fits (in which motor control is partially or totally lost)
- Tremors
One study described a patient with astasis as lying in bed with a normal body posture. When the patient was sitting, he tilted his body to the left. When he was asked to stand up, the patient rotated his trunk axis to the left (left shoulder going backwards), and tilted his body to that same side, showing resistance to passive correction of posture in both of these planes. He was unable to stand and fell backwards and towards the left.
Middle alternating hemiplegia typically constitutes weakness of the extremities accompanied by paralysis of the extraocular muscle specifically lateral rectus, on the opposite side of the affected extremities, which indicates a lesion in the caudal and medial pons involving the abducens nerve root (controls movement of the eye) and corticospinal fibers (carries motor commands from the brain to the spinal cord).
Periodic paralysis is an autosomal dominant myopathy with considerable variation in penetrance, leading to a spectrum of familial phenotypes (only one parent needs to carry the gene mutation to affect the children, but not all family members who share the gene are affected to the same degree). Specific diseases include:
- Hypokalemic periodic paralysis (), where potassium leaks into the muscle cells from the bloodstream.
- Hyperkalemic periodic paralysis (), where potassium leaks out of the cells into the bloodstream.
- Paramyotonia congenita (), a form which often accompanies hyperkalemic periodic paralysis, but may present alone. The primary symptom of paramyotonia congenita is muscle contracture which develops during exercise or activity. Paramyotonia congenita attacks may also be triggered by a low level of potassium in the bloodstream. This means people with both hyperkalemic periodic paralysis and paramyotonia congenita can have attacks with fluctuations of potassium up or down.
- Andersen-Tawil syndrome (), a form of periodic paralysis that includes significant heart rhythm problems, fainting and risk of sudden death. Potassium levels may be low, high, or normal during attacks of ATS. Patients with ATS may also have skeletal abnormalities like scoliosis (curvature of the spine), webbing between the second and third toes or fingers (syndactyly), crooked fingers (clinodactyly), a small jaw (micrognathia) and low-set ears. Patients need to have another form of periodic paralysis to have the Andersen-Tawil. If a patient has hypo or hyper periodic paralysis they have a 50% chance of getting Andersen-Tawil. They just have to have the gene that causes it. This is a rare occurrence of having this. Only around 100 people in the world are recorded to have it.