Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The disease appears to be progressive in nature. The Fields twins started having problems when they were four years old. By the time they had reached the age of nine, they were having difficulty walking and needed frames to assist them with walking. Their muscles have been gradually deteriorating over time. The disease affects the twins' nerves, causing them to make involuntary muscle movements such as trembling in the hands.
The extent of the disease is still unknown as the two women are only 21. However, the disease has had no apparent effect on their brains or personalities. Doctors do not know if the disease is fatal and, if so, what the life expectancy of one with this disease is. If the cause of the disease is genetic, there is a chance that the twins could pass it on to their future children.
Fields' disease is considered to be one of the rarest known diseases in the world, with only two diagnosed cases in history. The frequency of this disease is therefore 1 in approximately 3.75 billion (although since the disease manifested in identical twins, the actual frequency is 1 in approximately 7.5 billion). It is named after Welsh twins Catherine and Kirstie Fields, of Llanelli. Fields' disease is a neuromuscular disease, causing muscular degeneration.
The disease was first noticed when the twins were around the age of four. Doctors have been unable to identify it and have not been able to match it to any known diseases. As a result, the Fields sisters have undergone numerous tests, but no treatment has yet been found. No definitive cause has been determined and doctors have generally concluded that they were born with it.
Symptoms of the disease are an acute pain and swelling in the hips and knee joints. Some of the other characteristics of this disease are dwarfism from birth, deformation of the limbs after age seven and death as early as between 25 and 30 years or even younger. Depending on the mobility of the affected patients, the disease has been identified with three severities: in mild to moderate cases, the patient is able to walk with difficulty, in severe cases mobility is very restricted, whereas in acute cases the limbs are bent and badly crippled making the patients crawl.
Individuals with this syndrome typically develop normally until reaching the second decade of their lives but the onset of symptoms has been observed as early as age seven. The first defect observed in individuals who suffer from this condition affects the auditory system and is known as bilateral nerve deafness. Another early symptom is the development of myopia (nearsightedness). In addition to bilateral nerve deafness and myopia, other symptoms that plague infected individuals early in disease progression include ataxia, muscle wasting, severe peripheral neuritic pain sometimes accompanied by elevated spinal fluid protein, and joint stiffness.
The central nervous system (CNS) is affected with deficits in the cerebral cortex which indicate signs of mental retardation even though psychological observations appear relatively normal for individuals studied. Atypical epilepsy is also a common feature of CNS malfunctioning including aphasia expressions, blurred vision, and numbness of the face and limbs.
In the third decade of the condition, individuals develop further visual problems including retinitis pigmentosa, and bilateral cataracts. Sufferers endure the restriction of visual fields, night blindness, and eventually severe or complete blindness.
Individuals with this syndrome exhibit many physical deformities including skeletal, epidermal, and subcutaneous abnormalities. The skeletal problems are characterized by scoliosis and muscle weakness indicative of the kyphoscoliotic type which follow muscle wasting and peripheral neuritis (nerve inflammation). Osteoporosis is also observed in many cases. Skin and subcutaneous atrophy is common as well as skin ulcerations due to inability of the skin to heal. One of the final manifestations of disease is baldness.There is no evidence that the progression of Flynn–Aird syndrome shortens the patient's life-span, but the terrible conditions certainly increase morbidity.
Flynn–Aird syndrome is a rare, hereditary, neurological disease that is inherited in an autosomal dominant fashion. The syndrome involves defects in the nervous, auditory, skeletal, visual, and endocrine systems and encompasses numerous symptoms, bearing striking similarity to other known syndromes of neuroectodermal nature such as: Werner syndrome, Cockayne syndrome and Refsum syndrome.
The onset of Flynn–Aird syndrome typically occurs between ten and twenty years of age, however, the earliest case was diagnosed at age seven. As the syndrome progresses, initial symptoms tend to intensify and new symptoms become apparent. Unlike related syndromes and despite the intensity of symptoms in the disease progression, Flynn–Aird syndrome does not appear to shorten life expectancy.
The disease is characterized by early-onset dementia, ataxia, muscle wasting, skin atrophy, and eye abnormalities. In addition, patients have the potential of developing a number of other related symptoms such as: cataracts, retinitis pigmentosa, myopia (nearsightedness), dental caries, peripheral neuropathy (peripheral nerve damage), deafness, and cystic bone changes. This syndrome was first discovered in the early 1950s by American neurologists P. Flynn and Robert B. Aird who analyzed one family lineage inheritance pattern of this disease.
Handigodu Syndrome is a rare and painful osteoarthritic disorder endemic to the Malnad region in the state of Karnataka, India. Also known as "Handigodu Joint Disease", it derives its name from the village of "Handigodu" in the Sagara taluk of the Shimoga district of Karnataka where it was first noticed. This disease currently has no cure. Scientifically it is termed as "Endemic Familial Arthritis of Malnad". Since the day it was discovered, it has claimed over 1000 lives and has left many people crippled. Apart from Sagara taluk, the disease has also been reported from the Koppa, Narasimharajapura and Sringeri taluks of Chikkamagaluru district.
Infants with the disorder exhibit an inverted smile; they appear to be crying when they are actually smiling, in conjunction with uropathy. They also may be affected by hydronephrosis. Symptoms of this disease can start at very young ages. Many people with this syndrome will die in their teens to early 20s because of the renal failure (uropathy) if not diagnosed and treated. Children with the syndrome have abnormal facial development that cause an inverted smile, nerve connections are however normal. When attempting to smile, the child will appear to cry. Urinary problems arise as a result of a neurogenic bladder. Most patients older than the age of toilet training, present with enuresis, urinary-tract infection, hydronephrosis, and a spectrum of radiological abnormalities typical of obstructive or neurogenic bladders. Radiological abnormalities include things such as: trabeculated bladder, vesicoureteral reflex, external sphincter spasm, pyelonephritis, hyperreflexic bladder, noninhibited detrusor contraction, etc.. Urinary abnormalities might result in renal deterioration and failure. This can be prevented by taking proper measures to restore normal micturition and by taking antibiotics to prevent infections. In some cases, the affected patients become hypertensive and progress to end-stage renal disease, while others become uremic. Additionally, most patients suffer from constipation.
Early detection of this syndrome is possible through the peculiar faces that children present.
Foster–Kennedy syndrome (also known as Gowers–Paton–Kennedy syndrome, Kennedy's phenomenon or Kennedy's syndrome) refers to a constellation of findings associated with tumors of the frontal lobe.
Although "Foster–Kennedy syndrome" is equated with "Kennedy syndrome", it should not be confused with Kennedy disease, which is named for William R. Kennedy.
"Pseudo-Foster–Kennedy syndrome" is defined as one-sided optic atrophy with papilledema in the other eye but with the absence of a mass.
The syndrome is defined as the following changes:
- optic atrophy in the ipsilateral eye
- disc edema in the contralateral eye
- central scotoma (loss of vision in the middle of the visual fields) in the ipsilateral eye
- anosmia (loss of smell) ipsilaterally
This syndrome is due to optic nerve compression, olfactory nerve compression, and increased intracranial pressure (ICP) secondary to a mass (such as meningioma or plasmacytoma, usually an olfactory groove meningioma). There are other symptoms present in some cases such as nausea and vomiting, memory loss and emotional lability (i.e., frontal lobe signs).
Urofacial syndrome ( or hydronephrosis with peculiar facial expression), is an autosomal recessive congenital disorder characterized by inverted facial expressions in association with obstructive disease of the urinary tract. The inverted facial expression presented by children with this syndrome allows for early detection of the syndrome, this inverted smile is easy to see when the child is smiling and laughing. Early detection is vital for establishing a better prognosis as urinary related problems associated with this disease can cause harm if left untreated. Incontinence is another easily detectable symptom of the syndrome that is due to detrusor-sphincter discoordination, although it can easily be mistaken for pyelonephritis.
It may be associated with "HPSE2".
Because collagen plays an important role in the development of the body, people with Kniest Dysplasia will typically have their first symptoms at birth. These symptoms can include:.
- Musculoskeletal Problems
- Short limbs
- Shortened body trunk
- Flattened bones in the spine
- kyphoscoliosis
- Scoliosis (Lateral curvature of the spine)
- Early development of arthritis
- Respiratory problems
- Respiratory tract infection
- Difficulty breathing
- Eye problems
- Severe myopia (near-sightedness)
- Cataract (cloudiness in the lens of the eye)
- Hearing problems
- progressive hearing loss
- ear infections
Most symptoms are chronic and will continue to worsen as the individual ages. It is essential to have regular checkups with general doctors, orthopedist, ophthalmologists, and/or otorhinolaryngologists. This will help to detect whether there are any changes that could cause concern.
Posterior cortical atrophy (PCA), also called Benson's syndrome, is a form of dementia which is usually considered an atypical variant of Alzheimer's disease (AD). The disease causes atrophy of the posterior part of the cerebral cortex, resulting in the progressive disruption of complex visual processing. PCA was first described by D. Frank Benson in 1988.
In rare cases, PCA can be caused by dementia with Lewy bodies and Creutzfeldt–Jakob disease.
PCA usually affects people at an earlier age than typical cases of Alzheimer's disease, with initial symptoms often experienced in people in their mid-fifties or early sixties. This was the case with writer Terry Pratchett (1948-2015), who went public in 2007 about being diagnosed with PCA. In "The Mind's Eye", neurologist Oliver Sacks examines the case of concert pianist Lilian Kallir (1931–2004), who suffered from PCA.
Oguchi disease present with nonprogressive night blindness since young childhood or birth with normal day vision, but they frequently claim improvement of light sensitivities when they remain for some time in a darkened environment.
On examination patients have normal visual fields but the fundos have a diffuse or patchy, silver-gray or golden-yellow metallic sheen and the retinal vessels stand out in relief against the background.
A prolonged dark adaptation of three hours or more, leads to disappearance of this unusual discoloration and the appearance of a normal reddish appearance. This is known as the Mizuo-Nakamura phenomena and is thought to be caused by the overstimulation of rod cells.
Irritable Bowel Syndrome (IBS),
Fibromyalgia (FMS),
Chronic Fatigue Syndrome (CFS),
Chronic Pelvic Pain (CPP),
Interstitial Cystitis (IC),
Temporomandibular Joint Pain (TMJ), Functional Neurological Symptom Disorder (FNsD),
Non-Cardiac Chest Pain (NCCP),
Post-Traumatic Stress Disorder (PTSD),
Dysuria (Pain On Urination),
and Multiple Chemical Sensitivity
Autosomal dominant optic atrophy can present clinically as an isolated bilateral optic neuropathy (non-syndromic form) or rather as a complicated phenotype with extra-ocular signs (syndromic form).
Dominant optic atrophy usually affects both eyes roughly symmetrically in a slowly progressive pattern of vision loss beginning in childhood and is hence a contributor to childhood blindness. Vision testing will reveal scotomas (areas of impaired visual acuity) in the central visual fields with peripheral vision sparing and impaired color vision (color blindness). Visual acuity loss varies from mild to severe, typically ranging from 6/6 (in meters, equivalent to 20/20, ft) to 6/60 (20/200, ft) with a median value of 6/36 (roughly equivalent to 20/125 ft), corrected vision. In rare cases, vision loss is more severe.
Characteristic changes of the fundus evident on examination is temporal pallor (indicating atrophy) of the optic disc and in its end stage, excavation of the optic disc, as is also seen in Leber hereditary optic neuropathy and normal tension glaucoma.
Because the onset of Dominant optic atrophy is insidious, symptoms are often not noticed by the patients in its early stages and are picked up by chance in routine school eye screenings. First signs of Kjer's typically present between 4–6 years of age, though presentation at as early as 1 year of age has been reported. In some cases, Dominant optic atrophy may remain subclinical until early adulthood.
Progression of dominant optic atrophy varies even within the same family. Some have mild cases with visual acuity stabilizing in adolescence, others have slowly but constantly progressing cases, and others still have sudden step-like decreases in visual acuity. Generally, the severity of the condition by adolescence reflects the overall level of visual function to be expected throughout most of the patient’s adult life (Votruba, 1998). Slow decline in acuity is known to occur in late middle age in some families.
In complicated cases of autosomal dominant optic atrophy, in addition to bilateral optic neuropathy, several other neurological signs of neurological involvement can be observed: peripheral neuropathy, deafness, cerebellar ataxia, spastic paraparesis, myopathy.
Whether a given medical condition is termed a "functional disorder" depends in part on the state of knowledge. Some diseases, including epilepsy, schizophrenia, and migraine headaches were once considered functional disorders, but are no longer generally classified that way.
The main symptom resulting from PCA is a decrease in visuospatial and visuoperceptual capabilities. Because the posterior region of the brain is home to the occipital lobe, which is responsible for visual processing, visual functions are impaired in PCA patients. The atrophy is progressive; early symptoms include difficulty reading, blurred vision, light sensitivity, issues with depth perception, and trouble navigating through space. Additional symptoms include apraxia, a disorder of movement planning, alexia, an impaired ability to read, and visual agnosia, an object recognition disorder. Damage to the ventral, or “what” stream, of the visual system, located in the temporal lobe, leads to the symptoms related to general vision and object recognition deficits; damage to the dorsal, or “where/how” stream, located in the parietal lobe, leads to PCA symptoms related to impaired movements in response to visual stimuli, such as navigation and apraxia.
As neurodegeneration spreads, more severe symptoms emerge, including the inability to recognize familiar people and objects, trouble navigating familiar places, and sometimes visual hallucinations. In addition, patients may experience difficulty making guiding movements towards objects, and may experience a decline in literacy skills including reading, writing, and spelling. Furthermore, if neural death spreads into other anterior cortical regions, symptoms similar to Alzheimer's disease, such as memory loss, may result. PCA patients with significant atrophy in one hemisphere of the brain may experience hemispatial neglect, the inability to see stimuli on one half of the visual field. Anxiety and depression are also common in PCA patients.
Quite often, the presenting symptom of ornithine aminotransferase (OAT) deficiency is myopia which progresses to night blindness. The onset of myopia is often in early childhood. Ophthalmological findings in affected individuals include constricted visual fields, posterior subcapsular cataracts (can begin in late teens), elevated dark adaptation thresholds and decreased or absent electroretinographic responses. Symptoms of OAT deficiency are progressive, and between the ages of 45 and 65, most affected individuals are almost completely blind.
In some cases, affected individuals will present in the neonatal period with disease that closely mimics a classic urea cycle defect, such as ornithine transcarbamylase deficiency, as the block in ornithine metabolism leads to secondary dysfunction of the urea cycle. These individuals present with hyperammonemia, poor feeding, failure to thrive and increased excretion of orotic acid.
Kniest Dysplasia is a rare form of dwarfism caused by a mutation in the COL2A1 gene on chromosome 12. The COL2A1 gene is responsible for producing type II collagen. The mutation of COL2A1 gene leads to abnormal skeletal growth and problems with hearing and vision. What characterizes kniest dysplasia from other type II Osteochondrodysplasia is the level of severity and the dumb-bell shape of shortened long tubular bones. This condition was first diagnosed by Dr. Wilhelm Kniest in 1952. Dr. Kniest noticed that his 50 year old patient was having difficulties with restricted joint mobility. The patient had a short stature and was also suffering from blindness. Upon analysis of the patient's DNA, Dr. Kniest discovered that a mutation had occurred at a splice site of the COL2A1 gene. This condition is very rare and occurs less than 1 in 1,000,000 people. Males and females have equal chances of having this condition. Currently, there is no cure for kniest dysplasia. Alternative names for Kniest Dysplasia can include Kniest Syndrome, Swiss Cheese Cartilage Syndrome, Kniest Chondrodystrophy, or Metatrophic Dwarfism Type II.
Queen bee syndrome was first defined by G.L. Staines, T.E. Jayaratne, and C. Tavris in 1973. It describes a woman in a position of authority who views or treats subordinates more critically if they are female. This phenomenon has been documented by several studies. In another study, scientists from the University of Toronto speculated that the queen bee syndrome may be the reason that women find it more stressful to work for women managers; no difference was found in stress levels for male workers. An alternate, though closely related, definition describes a queen bee as one who has succeeded in her career, but refuses to help other women do the same.
Other conditions with similar appearing fundi include
- Cone dystrophy
- X-linked retinitis pigmentosa
- Juvenile macular dystrophy
These conditions do not show the Mizuo-Nakamura phenomenon.
Patients with Stargardt disease usually develop symptoms in the mid-first to the late second decade of life, with age of onset which can be as early as ~6 years of age. The main symptom of Stargardt disease is loss of visual acuity, uncorrectable with glasses, which progresses and frequently stabilizes between 20/200 and 20/400. Other symptoms include wavy vision, blind spots (scotomata), blurriness, impaired color vision, and difficulty adapting to dim lighting (delayed dark adaptation). The disease sometimes causes sensitivity to glare; overcast days offer some relief. Vision is most noticeably impaired when the macula (center of retina and focus of vision) is damaged, leaving peripheral vision more intact. Generally, vision loss starts within the first 20 years of life.
Examination with an ophthalmoscope shows few notable findings in the early stages of the disease. Eventually, however, an oval-shaped atrophy with a horizontal major axis appears in the retinal pigment epithelium, and has the appearance of beaten bronze, along with sparing of the area surrounding the optic disc (peripapillary sparing). Techniques such as fundus autofluorescence (FAF), Optical Coherence Tomography (OCT), or less frequently fluorescein angiography, can detect early signs before they are visible ophthalmoscopically.
Lipoatrophia semicircularis (also known as semicircular lipoatrophy) is a medical condition in humans, commonly known as "ribbed thighs".
It consists of a semicircular zone of atrophy of the subcutaneous fatty tissue located mostly on the front of the thighs. Skin and underlying muscles remains intact.
Semicircular lipoatrophy mainly affects office workers. The ribs in the thighs are typically between 2 and 4 cm high and are typically located at about 72 cm above the ground, which is the standard height of office furniture.
Dominant optic atrophy is also known as autosomal dominant optic atrophy, Kjer type; Kjer optic atrophy; or, Kjer's autosomal dominant optic atrophy.
Autoimmune retinopathy (AIR) is a rare disease in which the patient's immune system attacks proteins in the retina, leading to loss of eyesight. The disease is poorly understood, but may be the result of cancer or cancer chemotherapy. The disease is an autoimmune condition characterized by vision loss, blind spots, and visual field abnormalities. It can be divided into cancer-associated retinopathy (CAR) and melanoma-associated retinopathy (MAR). The condition is associated with retinal degeneration caused by autoimmune antibodies recognizing retinal proteins as antigens and targeting them. AIR's prevalence is extremely rare, with CAR being more common than MAR. It is more commonly diagnosed in females (approximately 60% of diagnosed patients are females) in the age range of 50-60.