Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The carotid and vertebral arteries are most commonly affected. Middle and distal regions of the internal carotid arteries are frequently involved. Patients with FMD in the carotid arteries typically present around 50 years of age. Symptoms of craniocervical involvement include headaches (mostly migraine), pulsatile tinnitus, dizziness, and neck pain, although patients are often asymptomatic. On physical examination, one may detect neurological symptoms secondary to a stroke or transient ischemic attack (TIA), a bruit over an affected artery, and diminished distal pulses. Complications of cerebrovascular FMD include TIA, ischemic stroke, Horner syndrome, or subarachnoid hemorrhage.
The main symptoms associated with renal FMD are secondary hypertension and bruits that can be heard with a stethoscope over the abdomen or flanks. Complications such as aneurysms, dissections, or occlusion of othe renal artery have been associated with renal artery FMD.
Moyamoya disease is a disease in which certain arteries in the brain are constricted. Blood flow is blocked by the constriction, and also by blood clots (thrombosis).
A collateral circulation develops around the blocked vessels to compensate for the blockage, but the collateral vessels are small, weak, and prone to bleeding, aneurysm and thrombosis. On conventional X-ray angiography, these collateral vessels have the appearance of a "puff of smoke" (described as "もやもや (moyamoya)" in Japanese).
When Moyamoya is diagnosed by itself, with no underlying correlational conditions, it is diagnosed as Moyamoya disease. This is also the case when the arterial constriction and collateral circulation are bilateral. Moyamoya syndrome is unilateral arterial constriction, or occurs when one of the several specified conditions is also present. This may also be considered as Moyamoya being secondary to the primary condition.
Mainly, occlusion of the distal internal carotid artery occurs. On angiography, a "puff of smoke" appearance is seen, and the treatment of choice is surgical bypass.
Renal artery stenosis is the narrowing of one of the renal arteries, most often caused by atherosclerosis or fibromuscular dysplasia. This narrowing of the renal artery can impede blood flow to the target kidney, resulting in renovascular hypertension – a secondary type of high blood pressure. Possible complications of renal artery stenosis are chronic kidney disease and coronary artery disease.
The causes of internal carotid artery dissection can be broadly categorised into two classes: spontaneous or traumatic.
The symptoms are often very similar to those of myocardial infarction (heart attack), with the most common being persistent chest pain.
The disease moyamoya, which is a Japanese mimetic word, gets its characteristic name due to the appearance of smoke on relevant angiographs resultant from the tangle of tiny vessels in response to stenosis. This makes the blood leak out of the arteries, causing pressure to the brain and subsequent headaches. The pathogenesis of moyamoya disease is unknown, although the gene ring finger protein 213 (RNF213) has been implicated.
Once it begins, the vascular occlusion tends to continue despite any known medical management. In some people this leads to transient ischemic attacks or repeated strokes with severe functional impairment or even death. In others, the blockage may not cause any symptoms.
The disease causes constrictions primarily in the internal carotid artery, and often extends to the middle and anterior cerebral arteries, branches of the internal carotid artery inside the skull. When the internal carotid artery becomes completely blocked, the fine collateral circulation that it supplies is obliterated. Patients often survive on the collateral circulation from the back (posterior) of the circle of Willis, arising from the basilar artery.
The arterial constrictions in moyamoya disease are unlike the constrictions in atherosclerosis. In atherosclerosis, the walls of arteries are damaged, leading to the deposition of fat and immune cells, and ultimately the accumulation of immune cells laden with fat. In moyamoya, the inner layer of the carotid artery proliferates within the arterial lumen. The artery also fills with blood clots, which may cause strokes.
Moyamoya disease tends to affect adults in the third to fourth decade of life. In children it tends to cause strokes or seizures. In adults it tends to cause strokes or bleeding. The clinical features are strokes, recurrent transient ischemic attacks (TIAs), sensorimotor paralysis (numbness and paralysis of the extremities), convulsions and/or migraine-like headaches. Moreover, following a stroke, secondary bleeding may occur. Such bleeding, called hemorrhagic strokes, may also stem from rupture of the weak neovascular vessel walls.
The signs and symptoms of carotid artery dissection may be divided into ischemic and non-ischemic categories:
"Non-ischemic signs and symptoms"
- Localised headache, particularly around one of the eyes.
- Neck pain
- Decreased pupil size with drooping of the upper eyelid (Horner syndrome)
- Pulsatile tinnitus
"Ischemic signs and symptoms"
- Temporary vision loss
- Ischemic stroke
Most cases of renal artery stenosis are asymptomatic, and the main problem is high blood pressure that cannot be controlled with medication. Decreased kidney function may develop if both kidneys do not receive adequate blood flow, furthermore some people with renal artery stenosis present with episodes of flash pulmonary edema.
Head pain occurs in 50–75% of all cases of vertebral artery dissection. It tends to be located at the back of the head, either on the affected side or in the middle, and develops gradually. It is either dull or pressure-like in character or throbbing. About half of those with VAD consider the headache distinct, while the remainder have had a similar headache before. It is suspected that VAD with headache as the only symptom is fairly common; 8% of all cases of vertebral and carotid dissection are diagnosed on the basis of pain alone.
Obstruction of blood flow through the affected vessel may lead to dysfunction of part of the brain supplied by the artery. This happens in 77–96% of cases. This may be temporary ("transient ischemic attack") in 10–16% of cases, but many (67–85% of cases) end up with a permanent deficit or a stroke. The vertebral artery supplies the part of the brain that lies in the posterior fossa of the skull, and this type of stroke is therefore called a posterior circulation infarct. Problems may include difficulty speaking or swallowing (lateral medullary syndrome); this occurs in less than a fifth of cases and occurs due to dysfunction of the brainstem. Others may experience unsteadiness or lack of coordination due to involvement of the cerebellum, and still others may develop visual loss (on one side of the visual field) due to involvement of the visual cortex in the occipital lobe. In the event of involvement of the sympathetic tracts in the brainstem, a partial Horner's syndrome may develop; this is the combination of a drooping eyelid, constricted pupil, and an apparently sunken eye on one side of the face.
If the dissection of the artery extends to the part of the artery that lies inside the skull, subarachnoid hemorrhage may occur (1% of cases). This arises due to rupture of the artery and accumulation of blood in the subarachnoid space. It may be characterized by a different, usually severe headache; it may also cause a range of additional neurological symptoms.
13–16% of all people with vertebral or carotid dissection have dissection in another cervical artery. It is therefore possible for the symptoms to occur on both sides, or for symptoms of carotid artery dissection to occur at the same time as those of vertebral artery dissection. Some give a figure of multiple vessel dissection as high as 30%.
A selective coronary angiogram is the most common method to diagnose the condition, although it is sometimes not recognised until after death. Intravascular ultrasound (IVUS) is also used as it is able to more easily differentiate the condition from atherosclerotic disease.
Vertebral artery dissection is one of the two types of dissection of the arteries in the neck. The other type, carotid artery dissection, involves the carotid arteries. Vertebral artery dissection is further classified as being either traumatic (caused by mechanical trauma to the neck) or spontaneous, and it may also be classified by the part of the artery involved: extracranial (the part outside the skull) and intracranial (the part inside the skull).
Starts with nonspecific symptoms such as:
- Localized joint pain
- Fever
- Fatigue
- Headaches
- Rashes
- Weight loss
- Diagnosis usually does not happen until the blockage causes deficient blood flow to the extremities or to a stroke.
Three or more of the following six criteria must be met:
- Age when disease starts is under 50
- Decreased brachial artery pulse
- Systolic blood pressure differs by more than 10mmHg between arms
- Cramping caused by exercise in the extremities
- Abnormal sounds (through stethoscope) over subclavian arteries or abdominal aorta
- A narrowing or blockage in the aorta, its primary branches, or large arteries as seen through a radiograph of the arteries.
Renovascular hypertension (or "renal hypertension") is a condition in which high blood pressure is caused by the kidneys' hormonal response to narrowing of the arteries supplying the kidneys. When functioning properly this hormonal axis regulates blood pressure. Due to low local blood flow, the kidneys mistakenly increases blood pressure of the entire circulatory system. It is a form of secondary hypertension - a form of hypertension whose cause is identifiable.
Symptoms of renovascular hypertension include the following:
- High blood pressure (early age)
- Kidney dysfunction
- Narrowing of arteries elsewhere in the body
- Pulmonary edema
Hydrops-ectopic calcification-moth-eaten skeletal dysplasia is a defect in cholesterol biosynthesis. It is also known as Greenberg dysplasia. Greenberg characterized the condition in 1988.
It has been associated with the lamin B receptor.
Renal-hepatic-pancreatic dysplasia is an autosomal recessive congenital disorder characterized by pancreatic fibrosis, renal dysplasia and hepatic dysgenesis. It is usually fatal soon after birth.
An association with NPHP3 has been described.
It was characterized in 1959.
This condition is a skeletal dysplasia characterized by short stature, mild brachydactyly, kyphoscoliosis, abnormal gait, enlarged knee joints, precocious osteoarthropathy, platyspondyly, delayed epiphyseal ossification, mild metaphyseal abnormalities, short stature and short and bowed legs. Intelligence is normal.
Some patients may manifest premature pubarche and hyperandrogenism.
Other features that may form part of the syndrome include precocious costal calcification, small iliac bones, short femoral necks, coxa vara, short halluces and fused vertebral bodies.
Ghosal hematodiaphyseal dysplasia is a metabolic disorder.
It is associated with diaphyseal dysplasia and refractory anemia.
It is associated with a deficiency of Thromboxane-A synthase, which produces Thromboxane A2.
It was characterized in 1988.
It involves numerous anomalies including:
- Post-axial polydactyly
- Congenital heart defects (most commonly an atrial septal defect producing a common atrium, occurring in 60% of affected individuals)
- Teeth present at birth (natal teeth)
- Fingernail dysplasia
- Short-limbed dwarfism, mesomelic pattern
- Short ribs
- Cleft palate
- Malformation of the wrist bones (fusion of the hamate and capitate bones).
The ABCDE mnemonic can be used to help determine a secondary cause of hypertension
- A: Accuracy, Apnea, Aldosteronism
- B: Bruits, Bad Kidney
- C: Catecholamines, Coarctation of the Aorta, Cushing's Syndrome
- D: Drugs, Diet
- E: Erythropoietin, Endocrine Disorders
Because of the ubiquity of arsenic in ground water supplies and its effect on cardiovascular health, low dose arsenic poisoning should be inferred as a part of the pathogenesis of idiopathic hypertension. Idiopathic and essential are both somewhat synonymous with primary hypertension. Arsenic exposure has also many of the same signs of primary hypertension such as headache, somnolence,
confusion, proteinuria
visual disturbances, and nausea and vomiting
The most common malformation in patients with the syndrome is kidney hypodysplasia, which are small and underdeveloped kidneys, often leading to end-stage renal disease (ESRD). Estimates show approximately 10% of children with hypoplastic kidneys are linked to the disease. Many different histological abnormalities have been noted, including:
- decrease in nephron number associated with hypertrophy
- focal segmental glomerulosclerosis
- interstitial fibrosis and tubular atrophy
- multicystic dysplastic kidney
Up to one-third of diagnosed patients develop end stage kidney disease, which may lead to complete kidney failure.
Melorheostosis is a mesenchymal dysplasia manifesting as regions of dripping wax appearance or flowing candle wax appearance. It is thought to be caused by a mutation of the LEMD3 gene. The disorder can be detected by radiograph due to thickening of bony cortex resembling "dripping candle wax". It is included on the spectrum of developmental bone dysplasias including pycnodysostosis and osteopoikilosis. The disorder tends to be unilateral and monostotic (i.e. affecting a single bone), with only one limb typically involved. Cases with involvement of multiple limbs, ribs, and bones in the spine have also been reported. There are no reported cases of involvement of skull or facial bones. Melorheostosis can be associated with pain, physical deformity, skin and circulation problems, contractures, and functional limitation. It is also associated with a benign inner ear dysplasia known as osteosclerosis.
It is not known if LEMD3 mutations can cause isolated melorheostosis in the absence of Buschke-Ollendorff syndrome.