Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Fetus in fetu (or foetus in foetu) is a developmental abnormality in which a mass of tissue resembling a fetus forms inside the body. An early example of the phenomenon was described in 1808 by George William Young.
There are two theories of origin concerning "fetus in fetu". One theory is that the mass begins as a normal fetus but becomes enveloped inside its twin. The other theory is that the mass is a highly developed teratoma. "Fetus in fetu" is estimated to occur in 1 in 500,000 live births.
A vanishing twin, also known as fetal resorption, is a fetus in a multi-gestation pregnancy which dies in utero and is then partially or completely reabsorbed. In some instances, the dead twin will be compressed into a flattened, parchment-like state known as "fetus papyraceus".
Vanishing twins occur in up to one out of every eight multifetus pregnancies and may not even be known in most cases. "High resorption rates, which cannot be explained on the basis of the expected abortion rate...suggest intense fetal competition for space, nutrition, or other factors during early gestation, with frequent loss or resorption of the other twin(s)."
In pregnancies achieved by IVF, "it frequently happens that more than one amniotic sac can be seen in early pregnancy, whereas a few weeks later there is only one to be seen and the other has 'vanished'."
A "fetus in fetu" can be considered alive, but only in the sense that its component tissues have not yet died or been eliminated. Thus, the life of a "fetus in fetu" is akin to that of a tumor in that its cells remain viable by way of normal metabolic activity. However, without the gestational conditions "in utero" with the amnion and placenta, a "fetus in fetu" can develop into, at best, an especially well differentiated teratoma; or, at worst, a high-grade metastatic teratocarcinoma. In terms of physical maturation, its organs have a working blood supply from the host, but all cases of "fetus in fetu" present critical defects, such as no functional brain, heart, lungs, gastrointestinal tract, or urinary tract. Accordingly, while a "fetus in fetu" can share select morphological features with a normal fetus, it has no prospect of any life outside of the host twin. Moreover, it poses clear threats to the life of the host twin on whom its own life depends.
Twin reversed arterial perfusion sequence—also called TRAP sequence, TRAPS, or acardiac twinning—is a rare complication of monochorionic twin pregnancies. It is a severe variant of twin-to-twin transfusion syndrome (TTTS). The twins' blood systems are connected instead of independent. One twin, called the "acardiac twin" or "TRAP fetus", is severely malformed. The heart is missing or deformed, hence the name acardiac, as are the upper structures of the body . The legs may be partially present or missing, and internal structures of the torso are often poorly formed. The other twin is usually normal in appearance. The normal twin, called the "pump twin", drives blood through both fetuses. It is called "reversed arterial perfusion" because in the acardiac twin the blood flows in a reversed direction.
TRAP sequence occurs in 1% of monochorionic twin pregnancies and in 1 in 35,000 pregnancies overall.
Locked twins is a rare complication of multiple pregnancy where two fetuses become interlocked during presentation before birth. It occurs in roughly 1 in 1,000 twin deliveries and 1 in 90,000 deliveries overall. Most often, locked twins are delivered via Caesarean section, given that the condition has been diagnosed early enough. The fetal mortality rate is high for the twin that presents first, with over 50% being stillborn.
Coffin birth, also known as postmortem fetal extrusion, is the expulsion of a nonviable fetus through the vaginal opening of the decomposing body of a deceased pregnant woman as a result of the increasing pressure of intra-abdominal gases. This kind of postmortem delivery occurs very rarely during the decomposition of a body. The practice of chemical preservation, whereby chemical preservatives and disinfectant solutions are pumped into a body to replace natural body fluids (and the bacteria that reside therein), have made the occurrence of "coffin birth" so rare that the topic is rarely mentioned in international medical discourse.
Typically during the decomposition of a human body, naturally occurring bacteria in the organs of the abdominal cavity (such as the stomach and intestines) generate gases as by-products of metabolism, which causes the body to swell. In some cases, the confined pressure of the gases can squeeze the uterus (the womb), even forcing it downward, and it may and be forced out of the body through the vaginal opening (a process called "prolapse"). If a fetus is contained within the uterus, it could therefore be expelled from the mother's body through the vaginal opening when the uterus turns inside-out, in a process that, to outward appearances, mimics childbirth. The main differences lie in the state of the mother and fetus and the mechanism of delivery: in the event of natural, live childbirth, the mother's contractions encourage the infant to emerge from the womb; in a case of coffin birth, built-up gas pressure within the putrefied body of a pregnant woman pushes the dead fetus from the body of the mother.
Cases have been recorded by medical authorities since the 16th century, though some archaeological cases provide evidence for its occurrence in many periods of human history. While cases of postmortem fetal expulsion have always been rare, the phenomenon has been recorded under disparate circumstances and is occasionally seen in a modern forensic context when the body of a pregnant woman lies undisturbed and undiscovered for some time following death. There are also cases whereby a fetus may become separated from the body of the pregnant woman about the time of death or during decomposition, though because those cases are not consistent with the processes described here, they are not considered true cases of postmortem fetal extrusion.
Conduplicato corpore is a condition that occurs during birth if the fetus is quite small and the pelvis is large. Spontaneous delivery may occur despite persistence of the abnormal lie. In such cases, the fetus is compressed with the head forced against the abdomen. A portion of the thoracic wall below the shoulder thus becomes the most dependent part, appearing at the vulva. The head and thorax then pass through the pelvic cavity at the same time, and the fetus, which is doubled upon itself (Conduplicato Corpore), is expelled. Such a mechanism is obviously possible only in the case of very small infant and occasionally when the second preterm fetus in a twin pregnancy is born.
The Oskie presentation is similar to the Occipito-Anterior position where the baby is head down, facing the spine, with back on the ventral side of the uterus; however, in this position while the torso is aligned with the mother's longitudinal axis the legs of the fetus are extended straight along the frontal axis of the mother, as if the baby is creating a right angle with his body. For the Oskie position to occur the baby's head must be far down the pelvis in order to allow room for leg extension, typically the arms are bent, tucked against the baby's body. There are no known complications for labor and delivery. This presentation is rare and is not well researched.
While some consider the brow presentation as an intermediate stage towards the face presentation, others disagree. Thus Bhal et al. indicated that both conditions are about equally common (1/994 face and 1/755 brow positions), and that prematurity was more common with face while postmaturity was more common with brow positions.
There are two types of locked twins: breech/vertex and vertex/vertex. In breech/vertex presentations, which are much more common, the first twin is in the breech position, presenting feet-first, and the second is in the cephalic (vertex) position, presenting in the normal head-first manner. In these cases, the chin of the first twin locks behind the chin of the second twin while in the uterus or birth canal, preventing vaginal delivery. In vertex/vertex presentations, where both twins are positioned for head-first delivery, the two heads become locked at the pelvic brim, preventing either fetus from passing through the pelvic inlet in a vaginal delivery.
Contributing factors to the interlocking of twins include uterine hypertonicity, small fetal size, and reduced levels of amniotic fluid following rupture of the membranes. It is more likely to occur in women with large pelvises, young primigravidae (young women in their first pregnancy), and pregnancies with monoamniotic twins.
The acardiac twin is a parasitic twin that fails to properly develop a heart, and therefore generally does not develop the upper structures of the body. The parasitic twin, little more than a torso with or without legs, receives its blood supply from the host twin by means of an umbilical cord-like structure (which often only has 2 blood vessels, instead of 3), much like a fetus in fetu, except the acardiac twin is outside the host twin's body. Although the reason is not fully understood, it is apparent that deoxygenated blood from the pump twin is perfused to the acardiac twin. The acardiac twin grows along with the pump twin, but due to inadequate oxygenation it is unable to develop the structures necessary for life, and presents with dramatic deformities.
Although no two acardiac twins are alike, twins with this disorder are grouped into 4 classes: Acephalus, anceps, acormus, and amorphus.
- Acephalus – The most common type, lacking a head, though it may have arms. Thoracic organs are generally absent, and disorganized & unidentifiable tissues take their place.
- Anceps – The acardius has most body parts, including a head with face and incomplete brain. Organs, though present, are crudely formed.
- Acormus – This type has no apparent body and the umbilical cord is seemingly attached to the neck, but x-rays or dissection reveal thoracic structures in the apparent head. One had a leg apparently attached to the head. This may be due to embryopathy degenerating a once normal embryo.
- Amorphus – This extreme form not only lacks a head and limbs, but also any internal organs, and consists of tissues with blood vessels branching from the umbilical cord. Some may only be stem cell tumors.
The acardiac twin may also be described as a "hemiacardius", which has an incompletely formed heart, or a "holoacardius", in which the heart is not present at all.
SCT is seen in 1 in every 35,000 live births, and is the most common tumor presenting in newborn humans. Most SCTs are found in babies and children, but SCTs have been reported in adults and the increasingly routine use of prenatal ultrasound exams has dramatically increased the number of diagnosed SCTs presenting in fetuses. Like other teratomas, an SCT can grow very large. Unlike other teratomas, an SCT sometimes grows larger than the rest of the fetus.
Sacrococcygeal teratomas are the most common type of germ cell tumors (both benign and malignant) diagnosed in neonates, infants, and children younger than 4 years. SCTs occur more often in girls than in boys; ratios of 3:1 to 4:1 have been reported.
Historically, sacrococcygeal teratomas present in 2 clinical patterns related to the child’s age, tumor location, and likelihood of tumor malignancy. With the advent of routine prenatal ultrasound examinations, a third clinical pattern is emerging.
- Fetal tumors present during prenatal ultrasound exams, with or without maternal symptoms. SCTs found during routine exams tend to be small and partly or entirely external. The internal SCTs are not easily seen via ultrasound, unless they are large enough to reveal their presence by the abnormal position of the fetal urinary bladder and other organs, but large fetal SCTs frequently produce maternal complications which necessitate non-routine, investigative ultrasounds.
- Neonatal tumors present at birth protruding from the sacral site and are usually mature or immature teratomas.
- Among infants and young children, the tumor presents as a palpable mass in the sacropelvic region compressing the bladder or rectum. These pelvic tumors have a greater likelihood of being malignant. An early survey found that the rate of tumor malignancy was 48% for girls and 67% for boys older than 2 months at the time of sacrococcygeal tumor diagnosis, compared with a malignant tumor incidence of 7% for girls and 10% for boys younger than 2 months at the time of diagnosis. The pelvic site of the primary tumor has been reported to be an adverse prognostic factor, most likely caused by a higher rate of incomplete resection.
- In older children and adults, the tumor may be mistaken for a pilonidal sinus, or it may be found during a rectal exam or other evaluation.
Confined placental mosaicism (CPM) represents a discrepancy between the chromosomal makeup of the cells in the placenta and the cells in the baby. CPM was first described by Kalousek and Dill in 1983. CPM is diagnosed when some trisomic cells are detected on chorionic villus sampling and only normal cells are found on a subsequent prenatal test, such as amniocentesis or fetal blood sampling. In theory, CPM is when the trisomic cells are found only in the placenta. CPM is detected in approximately 1-2% of ongoing pregnancies that are studied by chorionic villus sampling (CVS) at 10 to 12 weeks of pregnancy. Chorionic villus sampling is a prenatal procedure which involves a placental biopsy. Most commonly when CPM is found it represents a trisomic cell line in the placenta and a normal diploid chromosome complement in the baby. However, the fetus is involved in about 10% of cases.
Cephalo-pelvic disproportion exists when the capacity of the pelvis is inadequate to allow the fetus to negotiate the birth canal. This may be due to a small pelvis, a nongynecoid pelvic formation, a large fetus, an unfavorable orientation of the fetus, or a combination of these factors. Certain medical conditions may distort pelvic bones, such as rickets or a pelvic fracture, and lead to CPD.
Transverse diagonal measurement has been proposed as a predictive method.
Sacrococcygeal teratoma (SCT) is a type of tumor known as a teratoma that develops at the base of the coccyx (tailbone) and is thought to be derived from the primitive streak. Sacrococcygeal teratomas are benign 75% of the time, malignant 12% of the time, and the remainder are considered "immature teratomas" that share benign and malignant features. Benign sacrococcygeal teratomas are more likely to develop in younger children who are less than 5 months old, and older children are more likely to develop malignant sacrococcygeal teratomas. The Currarino triad (OMIM 176450), due to an autosomal dominant mutation in the MNX1 gene, consists of a presacral mass (usually a mature teratoma or anterior meningocele), anorectal malformation and sacral dysgenesis.
A large fetus can be one case of CPD. A large fetus can be caused by gestational diabetes, postterm pregnancy, genetic factors, and multiparity.
The shape of the pelvis can also be a cause of CPD. The pelvis may be too small, or the shape of the pelvis may be malformed. Shorter women are more likely to suffer from CPD as are adolescents.
A dermoid cyst is a mature cystic teratoma containing hair (sometimes very abundant) and other structures characteristic of normal skin and other tissues derived from the ectoderm. The term is most often applied to teratoma on the skull sutures and in the ovaries of females.
Teratomas maybe found in babies, children, and adults. Teratomas of embryonal origin are most often found in babies at birth, in young children, and, since the advent of ultrasound imaging, in fetuses.
The most commonly diagnosed fetal teratomas are sacrococcygeal teratoma (Altman types I, II, and III) and cervical (neck) teratoma. Because these teratomas project from the fetal body into the surrounding amniotic fluid, they can be seen during routine prenatal ultrasound exams. Teratomas within the fetal body are less easily seen with ultrasound; for these, MRI of the pregnant uterus is more informative.
Molar pregnancies usually present with painless vaginal bleeding in the fourth to fifth month of pregnancy. The uterus may be larger than expected, or the ovaries may be enlarged. There may also be more vomiting than would be expected (hyperemesis). Sometimes there is an increase in blood pressure along with protein in the urine. Blood tests will show very high levels of human chorionic gonadotropin (hCG).
In medicine (obstetrics), the term fetal distress refers to the presence of signs in a pregnant woman—before or during childbirth—that suggest that the fetus may not be well. Because of its lack of precision, the term is eschewed in modern American obstetrics.
Polyhydramnios (polyhydramnion, hydramnios, polyhydramnios) is a medical condition describing an excess of amniotic fluid in the amniotic sac. It is seen in about 1% of pregnancies. It is typically diagnosed when the amniotic fluid index (AFI) is greater than 24 cm.
There are two clinical varieties of polyhydramnios:
- Chronic polyhydramnios where excess amniotic fluid accumulates gradually
- Acute polyhydramnios where excess amniotic fluid collects rapidly
The opposite to polyhydramnios is oligohydramnios, a deficiency in amniotic fluid.
In most cases, the exact cause cannot be identified. A single case may have one or more causes, including intrauterine infection (TORCH), rh-isoimmunisation, or chorioangioma of the placenta. In a multiple gestation pregnancy, the cause of polyhydramnios usually is twin-to-twin transfusion syndrome. Maternal causes include cardiac problems, kidney problems, and maternal diabetes mellitus, which causes fetal hyperglycemia and resulting polyuria (fetal urine is a major source of amniotic fluid).
A recent study distinguishes between mild and severe polyhydramnios and showed that Apgar score of less than 7, perinatal death and structural malformations only occurred in women with severe polyhydramnios.
In another study, all patients with polyhydramnios, that had a sonographically normal fetus, showed no chromosomal anomalies.
but these anomalies include:
- gastrointestinal abnormalities such as esophageal atresia & duodenal atresia (causing inability to swallow amniotic fluid), anencephaly, facial cleft, neck masses, tracheoesophageal fistula, and diaphragmatic hernias. An annular pancreas causing obstruction may also be the cause.
- Bochdalek's hernia, in which the pleuro-peritoneal membranes (especially the left) will fail to develop & seal the pericardio- peritoneal canals. This results in the stomach protrusion up into the thoracic cavity, and the fetus is unable to swallow sufficient amounts of amniotic fluid.
- fetal renal disorders that result in increased urine production during pregnancy, such as in antenatal Bartter syndrome. Molecular diagnosis is available for these conditions.
- neurological abnormalities such as anencephaly, which impair the swallowing reflex. Anencephaly is failure of close of the rostral neuropore (rostral neural tube defect). If the rostral neuropore fails to close there will be no neural mechanism for swallowing.
- chromosomal abnormalities such as Down syndrome and Edwards syndrome (which is itself often associated with GI abnormalities)
- Skeletal dysplasia, or dwarfism. There is a possibility of the chest cavity not being large enough to house all of the baby's organs causing the trachea and esophagus to be restricted, not allowing the baby to swallow the appropriate amount of amniotic fluid.
- sacrococcygeal teratoma
Acrania can be diagnosed early in pregnancy through an ultrasound. This abnormality appears during the beginning or end of the fourth week of the fetus's development. An absence of the skull is needed in order to make a diagnosis. A presence of brain tissue will confirm the diagnosis of acrania and differentiate it from other developmental problems such as anencephaly.
The cause of postmortem fetal extrusion is not completely understood, as the event is neither predictable nor replicable under experimental conditions. Evidence has accumulated opportunistically and direct observation is serendipitous. While it is possible that more than one cause can produce the same result, there is an accepted hypothesis, based on established research in the fields of biochemistry and forensic taphonomy, and further supported by observational research, that accounts for the taphonomic mechanisms that would result in the most often encountered cases of postmortem extrusion of a non-viable fetus.
Typically, as a dead body decomposes, body tissues become depleted of oxygen and the body begins to putrefy; anaerobic bacteria in the gastrointestinal tract proliferate and as a result of increased metabolic activity, release gases such as carbon dioxide, methane, and hydrogen sulfide. These bacteria secrete exoenzymes to break down body cells and proteins for ingestion which thus weakens organ tissues. Increasing pressure forces the diffusion of excessive gases into the weakened tissues where they enter the circulatory system and spread to other parts of the body, causing both torso and limbs to become bloated. These decompositional processes weaken the structural integrity of organs by separating necrotizing tissue layers. Bloating usually begins from two to five days after death, depending on external temperature, humidity, and other environmental conditions. As the volume of gas increases, the pressure begins to force various body fluids to exude from all natural orifices. It is at this point during the decomposition of a pregnant body that amniotic membranes become stretched and separated, and intraabdominal gas pressure may force the and prolapse of the uterus, which would result in the expulsion of the fetus through the vaginal canal. It has been observed that the bodies of multiparous women are more likely to spontaneously expel the fetus during decomposition than those who died during their first pregnancy, because of the more elastic nature of the cervix.
Acrania is a rare congenital disorder that occurs in the human fetus in which the flat bones in the cranial vault are either completely or partially absent. The cerebral hemispheres develop completely but abnormally. The condition is frequently, though not always, associated with anencephaly. The fetus is said to suffer from acrania if it meets the following criteria: the fetus should have a perfectly normal facial bone, a normal cervical column but without the fetal skull and a volume of brain tissue equivalent to at least one third of the normal brain size.