Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Feline zoonosis are the viral, bacterial, fungal, protozoan, nematode and arthropod infections that can be transmitted to humans from the domesticated cat, "Felis catus". Some of these are diseases are reemerging and newly emerging infections or infestations caused by zoonotic pathogens transmitted by cats. In some instances, the cat can display symptoms of infection (these may differ from the symptoms in humans) and sometimes the cat remains asymptomatic. There can be serious illnesses and clinical manifestations in people who become infected. This is dependent on the immune status and age of the person. Those who live in close association with cats are more prone to these infections. But those that do not keep cats as pets are also able to acquire these infections because of the transmission can be from cat feces and the parasites that leave their bodies.
People can acquire cat-associated infections through bites, scratches or other direct contact of the skin or mucous membranes with the cat. This includes 'kissing' or letting the animal lick the mouth or nose. Mucous membranes are easily infected when the pathogen is in the mouth of the cat. Pathogens can also infect people when there is contact with animal saliva, urine and other body fluids or secretions, When fecal material is unintentionally ingested, infection can occur. Feline zooinosis can be acquired by a person by inhalation of aerosols or droplets coughed up by the cat.
In the United States, forty percent of homes have at least one cat. Some contagious infections such as campylobacteriosis and salmonellosis cause visible symptoms of the disease in cats. Other infections, such as cat scratch disease and toxoplasmosis, have no visible symptoms and are carried by apparently healthy cats.
Cryptosporidiosis is a parasitic disease that is transmitted through contaminated food or water from an infected person or animal. Cryptosporidiosis in cats is rare, but they can carry the protozoan without showing any signs of illness. Cryptosporidiosis can cause profuse, watery diarrhea with cramping, abdominal pain, and nausea in people. Illness in people is usually self-limiting and lasts only 2–4 days, but can become severe in people with weakened immune systems. Cryptosporidiosis (Cryptosporidium spp.) Cats transmit the protozoan through their feces. The symptoms in people weight loss and chronic diarrhea in high-risk patients. More than one species of this genus can be acquired by people. Dogs can also transmit this parasite.
The several forms of the infection are:
- Skin/subcutaneous tissue disease is a septic phlegmon that develops classically in the hand and forearm after a cat bite. Inflammatory signs are very rapid to develop; in 1 or 2 hours, edema, severe pain, and serosanguineous exudate appear. Fever, moderate or very high, can be seen, along with vomiting, headache, and diarrhea. Lymphangitis is common. Complications are possible, in the form of septic arthritis, osteitis, or evolution to chronicity.
- Sepsis is very rare, but can be as fulminant as septicaemic plague, with high fever, rigors, and vomiting, followed by shock and coagulopathy.
- Pneumonia disease is also rare and appears in patients with some chronic pulmonary pathology. It usually presents as bilateral consolidating pneumonia, sometimes very severe.
- Zoonosis, pasteurellosis can be transmitted to humans through cats.
Other locations are possible, such as septic arthritis, meningitis, and acute endocarditis, but are very rare.
Diagnosis is made with isolation of "Pasteurella multocida" in a normally sterile site (blood, pus, or cerebrospinal fluid).
Affected animals normally have generalised signs such as depression, dullness, weakness and lethargy, pyrexia and weight loss and decreased production. They will also have respiratory signs including bilateral nasal discharge, dyspnoea, tachypnoea and coughing. Occasionally the only sign seen is sudden death.
Typical pathological lesions are very suggestive of the disease - they are localised exclusively to the lung and pleura. Lungs are normally a port wine colour and abundant pleural exudate and pleuritis and adhesions are common. The pleural exudates may have solidified forming a gelatinous covering.
Histological examination of the lung tissues may show acute serofibrinous to chronic fibrino-necrotic pleuropneumonia with neutrophilic inflammation in the alveoli, bronchioles, interstitial septae and subpleural connective tissue.
The great majority of trichinosis infections have either minor or no symptoms and no complications. There are two main phases for the infection: enteral (affecting the intestines) and parenteral (outside the intestines). The symptoms vary depending on the phase, species of "Trichinella", quantity of encysted larvae ingested, age, sex, and host immunity.
A large burden of adult worms in the intestines promotes symptoms such as nausea, heartburn, dyspepsia, and diarrhea from two to seven days after infection, while small worm burdens generally are asymptomatic. Eosinophilia presents early and increases rapidly.
Coccidiosis is a parasitic disease of the intestinal tract of animals caused by coccidian protozoa. The disease spreads from one animal to another by contact with infected feces or ingestion of infected tissue. Diarrhea, which may become bloody in severe cases, is the primary symptom. Most animals infected with coccidia are asymptomatic, but young or immunocompromised animals may suffer severe symptoms and death.
While coccidia can infect a wide variety of animals, including humans, birds, and livestock, they are usually species-specific. One well-known exception is toxoplasmosis caused by "Toxoplasma gondii".
Humans may first encounter coccidia when they acquire a puppy or kitten that is infected. Other than "T. gondii", the infectious organisms are canine and feline-specific and are not contagious to humans, unlike the zoonotic diseases.
Swine brucellosis is a zoonosis affecting pigs, caused by the bacterium "Brucella suis". The disease typically causes chronic inflammatory lesions in the reproductive organs of susceptible animals or orchitis, and may even affect joints and other organs. The most common symptom is abortion in pregnant susceptible sows at any stage of gestation. Other manifestations are temporary or permanent sterility, lameness, posterior paralysis, spondylitis, and abscess formation. It is transmitted mainly by ingestion of infected tissues or fluids, semen during breeding, and suckling infected animals.
Since brucellosis threatens the food supply and causes undulant fever, "Brucella suis" and other "Brucella" species ("B. melitensis, B. abortis, B. ovis, B. canis") are recognized as potential agricultural, civilian, and military bioterrorism agents.
The most frequent clinical sign following "B. suis" infection is abortion in pregnant females, reduced milk production, and infertility. Cattle can also be transiently infected when they share pasture or facilities with infected pigs, and "B. suis" can be transmitted by cow’s milk.
Swine also develop orchitis (swelling of the testicles), lameness (movement disability), hind limb paralysis, or spondylitis (inflammation in joints).
Physiological reactions to "Toxocara" infection depend on the host’s immune response and the parasitic load. Most cases of "Toxocara" infection are asymptomatic, especially in adults. When symptoms do occur, they are the result of migration of second stage "Toxocara" larvae through the body.
Covert toxocariasis is the least serious of the three syndromes and is believed to be due to chronic exposure. Signs and symptoms of covert toxocariasis are coughing, fever, abdominal pain, headaches, and changes in behavior and ability to sleep. Upon medical examination, wheezing, hepatomegaly, and lymphadenitis are often noted.
High parasitic loads or repeated infection can lead to visceral larva migrans (VLM). VLM is primarily diagnosed in young children, because they are more prone to exposure and ingestion of infective eggs. "Toxocara" infection commonly resolves itself within weeks, but chronic eosinophilia may result. In VLM, larvae migration incites inflammation of internal organs and sometimes the central nervous system. Symptoms depend on the organ(s) affected. Patients can present with pallor, fatigue, weight loss, anorexia, fever, headache, rash, cough, asthma, chest tightness, increased irritability, abdominal pain, nausea, and vomiting. Sometimes the subcutaneous migration tracks of the larvae can be seen. Patients are commonly diagnosed with pneumonia, bronchospasms, chronic pulmonary inflammation, hypereosinophilia, hepatomegaly, hypergammaglobulinaemia (IgM, IgG, and IgE classes), leucocytosis, and elevated anti-A and –B isohaemagglutinins. Severe cases have occurred in people who are hypersensitive to allergens; in rare cases, epilepsy, inflammation of the heart, pleural effusion, respiratory failure, and death have resulted from VLM.
Ocular larva migrans (OLM) is rare compared with VLM. A light "Toxocara" burden is thought to induce a low immune response, allowing a larva to enter the host’s eye. Although there have been cases of concurrent OLM and VLM, these are extremely exceptional. OLM often occurs in just one eye and from a single larva migrating into and encysting within the orbit. Loss of vision occurs over days or weeks. Other signs and symptoms are red eye, white pupil, fixed pupil, retinal fibrosis, retinal detachment, inflammation of the eye tissues, retinal granulomas, and strabismus. Ocular granulomas resulting from OLM are frequently misdiagnosed as retinoblastomas. "Toxocara" damage in the eye is permanent and can result in blindness.
A case study published in 2008 supported the hypothesis that eosinophilic cellulitis may also be caused by infection with "Toxocara". In this study, the adult patient presented with eosinophilic cellulitis, hepatosplenomegaly, anemia, and a positive ELISA for "T. cani"s.
Contagious caprine pleuropneumonia (CCPP) is a cause of major economic losses to goat producers in Africa, Asia and the Middle East.
Disease is caused by members of the Mycoplasma genus - usually "Mycoplasma capricolum subsp. capricolum" but sometimes by "M. mycoides" subsp. "capri" or "M. mycoides" subsp. "mycoides". It is extremely contagious with very high morbidity and mortality rates, causing an interstitial fibrinous pleuropneumonia in infected goats. Infection is spread by close-contact aerosol, therefore overcrowding and confinement increases disease incidence. Stress factors such as malnutrition and long transport can also predispose animals to disease.
Goats are the only species affected, therefore the disease is not a zoonosis. There is no age breed or sex predilection, but clinical signs are often worse in younger animals.
Zoonoses are infectious diseases of animals (usually vertebrates) that can naturally be transmitted to humans.
Major modern diseases such as Ebola virus disease and salmonellosis are zoonoses. HIV was a zoonotic disease transmitted to humans in the early part of the 20th century, though it has now evolved to a separate human-only disease. Most strains of influenza that infect humans are human diseases, although many strains of swine and bird flu are zoonoses; these viruses occasionally recombine with human strains of the flu and can cause pandemics such as the 1918 Spanish flu or the 2009 swine flu. "Taenia solium" infection is one of the neglected tropical diseases with public health and veterinary concern in endemic regions. Zoonoses can be caused by a range of disease pathogens such as viruses, bacteria, fungi and parasites; of 1,415 pathogens known to infect humans, 61% were zoonotic. Most human diseases originated in animals; however, only diseases that routinely involve animal to human transmission, like rabies, are considered direct zoonosis.
Zoonoses have different modes of transmission. In direct zoonosis the disease is directly transmitted from animals to humans through media such as air (influenza) or through bites and saliva (rabies). In contrast, transmission can also occur via an intermediate species (referred to as a vector), which carry the disease pathogen without getting infected. When humans infect animals, it is called reverse zoonosis or anthroponosis. The term is from Greek: ζῷον "zoon" "animal" and νόσος "nosos" "sickness".
The symptoms are like those associated with many other febrile diseases, but with emphasis on muscular pain and night sweats. The duration of the disease can vary from a few weeks to many months or even years.
In the first stage of the disease, sepsis occurs and leads to the classic triad of undulant fevers, sweating (often with characteristic foul moldy smell sometimes likened to wet hay), and migratory arthralgia and myalgia (joint and muscle pain). Blood tests characteristically reveal a low number of white blood cells and red blood cells, show some elevation of liver enzymes such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and demonstrate positive Bengal Rose and Huddleston reactions. Gastrointestinal symptoms occur in 70% of cases and include nausea, vomiting, decreased appetite, unintentional weight loss, abdominal pain, constipation, diarrhea, an enlarged liver, liver inflammation, liver abscess, and an enlarged spleen.
This complex is, at least in Portugal, Israel, and Jordan, known as Malta fever. During episodes of Malta fever, melitococcemia (presence of brucellae in blood) can usually be demonstrated by means of blood culture in tryptose medium or Albini medium. If untreated, the disease can give origin to focalizations or become chronic. The focalizations of brucellosis occur usually in bones and joints and spondylodiscitis of the lumbar spine accompanied by sacroiliitis is very characteristic of this disease. Orchitis is also common in men.
Diagnosis of brucellosis relies on:
1. Demonstration of the agent: blood cultures in tryptose broth, bone marrow cultures. The growth of brucellae is extremely slow (they can take up to two months to grow) and the culture poses a risk to laboratory personnel due to high infectivity of brucellae.
2. Demonstration of antibodies against the agent either with the classic Huddleson, Wright, and/or Bengal Rose reactions, either with ELISA or the 2-mercaptoethanol assay for IgM antibodies associated with chronic disease
3. Histologic evidence of granulomatous hepatitis on hepatic biopsy
4. Radiologic alterations in infected vertebrae: the Pedro Pons sign (preferential erosion of the anterosuperior corner of lumbar vertebrae) and marked osteophytosis are suspicious of brucellic spondylitis.
The consequences of "Brucella" infection are highly variable and may include arthritis, spondylitis, thrombocytopenia, meningitis, uveitis, optic neuritis, endocarditis, and various neurological disorders collectively known as neurobrucellosis.
Zoonotic transmission can occur in any context in which there is companionistic (pets), economic (farming, etc.), predatory (hunting, butchering or consuming wild game) or research contact with or consumption of animals, animal products, or animal derivatives (vaccines, etc.).
Acute toxoplasmosis is often asymptomatic in healthy adults. However, symptoms may manifest and are often influenza-like: swollen lymph nodes, headaches, fever, and fatigue, or muscle aches and pains that last for a month or more. Rarely will a human with a fully functioning immune system develop severe symptoms following infection. People with weakened immune systems are likely to experience headache, confusion, poor coordination, seizures, lung problems that may resemble tuberculosis or Pneumocystis jiroveci pneumonia (a common opportunistic infection that occurs in people with AIDS), or blurred vision caused by severe inflammation of the retina (ocular toxoplasmosis) Young children and immunocompromised people, such as those with HIV/AIDS, those taking certain types of chemotherapy, or those who have recently received an organ transplant, may develop severe toxoplasmosis. This can cause damage to the brain (encephalitis) or the eyes (necrotizing retinochoroiditis). Infants infected via placental transmission may be born with either of these problems, or with nasal malformations, although these complications are rare in newborns. The toxoplasmic trophozoites causing acute toxoplasmosis are referred to as tachyzoites, and are typically found in bodily fluids.
Swollen lymph nodes are commonly found in the neck or under the chin, followed by the armpits and the groin. Swelling may occur at different times after the initial infection, persist, and recur for various times independently of antiparasitic treatment. It is usually found at single sites in adults, but in children, multiple sites may be more common. Enlarged lymph nodes will resolve within one to two months in 60% of cases. However, a quarter of those affected take two to four months to return to normal, and 8% take four to six months. A substantial number (6%) do not return to normal until much later.
Brucellosis is a highly contagious zoonosis caused by ingestion of unpasteurized milk or undercooked meat from infected animals, or close contact with their secretions.
"Brucella" species are small, gram-negative, nonmotile, nonspore-forming, rod-shaped (coccobacilli) bacteria. They function as facultative intracellular parasites, causing chronic disease, which usually persists for life. Four species infect humans: "B. abortus", "B. canis", "B. melitensis", and "B. suis". "B. abortus" is less virulent than "B. melitensis" and is primarily a disease of cattle. "B. canis" affects dogs. "B. melitensis" is the most virulent and invasive species; it usually infects goats and occasionally sheep. "B. suis" is of intermediate virulence and chiefly infects pigs. Symptoms include profuse sweating and joint and muscle pain. Brucellosis has been recognized in animals and humans since the 20th century.
Puppies are frequently infected with coccidia from the feces of their mother, and are more likely to develop coccidiosis due to their undeveloped immune systems. Stress can trigger symptoms in susceptible animals.
Symptoms in young dogs include diarrhea with mucus and blood, poor appetite, vomiting, and dehydration. Untreated the disease can be fatal.
Treatment is routine and effective. Diagnosis is made by low-powered microscopic examination of the feces, which is generally replete with oocysts. Readily available drugs eliminate the protozoa or reduce them enough that the animal's immune system can clear the infection. Permanent damage to the gastrointestinal system is rare, and a dog will usually suffer no long-lasting negative effects.
Toxoplasmosis is a parasitic disease caused by "Toxoplasma gondii". Infections with toxoplasmosis usually cause no obvious symptoms in adults. Occasionally there may be a few weeks or months of mild flu-like illness such as muscle aches and tender lymph nodes. In a small number of people, eye problems may develop. In those with a weak immune system, severe symptoms such as seizures and poor coordination may occur. If infected during pregnancy, a condition known as congenital toxoplasmosis may affect the child.
Toxoplasmosis is usually spread by eating poorly cooked food that contains cysts, exposure to infected cat feces, and from a mother to a child during pregnancy if the mother becomes infected. Rarely the disease may be spread by blood transfusion. It is not otherwise spread between people. The parasite is only known to reproduce sexually in the cat family. However, it can infect most types of warm-blooded animals, including humans. Diagnosis is typically by testing blood for antibodies or by testing amniotic fluid for the parasite's DNA.
Prevention is by properly preparing and cooking food. It is also recommended that pregnant women do not clean cat litter boxes. Treatment of otherwise healthy people is usually not needed. During pregnancy spiramycin or pyrimethamine/sulfadiazine and folinic acid may be used for treatment.
Up to half of the world's population is infected by toxoplasmosis but have no symptoms. In the United States about 23% are affected and in some areas of the world this is up to 95%. About 200,000 cases of congenital toxoplasmosis occur a year. Charles Nicolle and Louis Manceaux first described the organism in 1908. In 1941 transmission during pregnancy from a mother to a child was confirmed.
A sharp rise in mortality is often seen (depending on the virulence of the disease). Other clinical signs include abdominal swelling, anorexia, abnormal swimming, darkening of the skin, and trailing of the feces from the vent. On necropsy, internal damage (viral necrosis) to the pancreas and thick mucus in the intestines often is present. Surviving fish should recover within one to two weeks.
Diagnostic methods for the detection of the disease include: characteristic histological pancreatic lesion, PCR, indirect fluorescent antibody testing, ELISA, and virus culture. High virus titers can be isolated from carrier animals.
The incubation period for "Toxocara canis" and "cati" eggs depends on temperature and humidity. "T. canis" females, specifically, are capable of producing up to 200,000 eggs a day that require 2-6 weeks minimum up to a couple months before full development into the infectious stage. Under ideal summer conditions, eggs can mature to the infective stage after two weeks outside of a host. Provided sufficient oxygen and moisture availability, "Toxocara" eggs can remain infectious for years, as their resistant outer shell enables the protection from most environmental threats.However, as identified in a case study presented within the journal of helminthology, the second stage of larvae development poses strict vulnerabilities to certain environmental elements. High temperatures and low moisture levels will quickly degrade the larvae during this stage of growth.
Infectious pancreatic necrosis (IPN) is a severe viral disease of salmonid fish. It is caused by infectious pancreatic necrosis virus, which is a member of the Birnaviridae family. This disease mainly affects young salmonids, such as trout or salmon, of less than six months, although adult fish may carry the virus without showing symptoms. Resistance to infection develops more rapidly in warmer water. It is highly contagious and found worldwide, but some regions have managed to eradicate or greatly reduce the incidence of disease. The disease is normally spread horizontally via infected water, but spread also occurs vertically. It is not a zoonosis.
The acute phase (invasion and migration) may be marked by diarrhea, abdominal pain, fever, cough, urticaria, hepatosplenomegaly, pulmonary abnormalities, and eosinophilia. During the chronic phase, pulmonary manifestations include cough, expectoration of discolored sputum containing clumps of eggs, hemoptysis, and chest radiographic abnormalities. Extrapulmonary locations of the adult worms result in more severe manifestations, especially when the brain is involved." "Diagnosis is based on microscopic demonstration of eggs in stool or sputum, but these are not present until 2 to 3 months after infection. (Eggs are also occasionally encountered in effusion fluid or biopsy material.) Concentration techniques may be necessary in patients with light infections. Biopsy may allow diagnostic confirmation and species identification when an adult or developing fluke is recovered.
Paragonimiasis can commonly be misdiagnosed as tuberculosis.
The hallmark clinical sign of effusive FIP is the accumulation of fluid within the abdomen or chest, which can cause breathing difficulties. Other symptoms include lack of appetite, fever, weight loss, jaundice, and diarrhea.
Post-kala-azar dermal leishmaniasis (PKDL) is a recurrence of kala-azar that may appear on the skin of affected individuals months and up to 20 years after being partially treated, untreated or even in those considered adequately treated. In Sudan, they can be demonstrated in up to 60% of treated cases. They manifest as hypopigmented skin lesions (such as macules, papules, nodules), or facial redness. Though any organism causing kala-azar can lead to PKDL, it is commonly associated with "Leishmania donovani" which gives different disease patterns in India and Sudan. In the Indian variant, nodules enlarge with time and form plaques but rarely ulcerate, but nodules from the African variety often ulcerate as they progress. Nerve involvement is common in African variety but rare in Indian subcontinent. Histology demonstrates a mixture of chronic inflammatory cells; there can be macrophage or epitheloid granuloma. Parasite concentration is not consistent among studies, perhaps reflecting low sensitivity of diagnostic methods used in earlier entries.
Current approach to diagnosis involves 1. demonstration of parasite by microscopy, "in vitro" culture or animal inoculation; 2. immunodiagnosis of parasite antigen; 3. detection of parasite DNA in tissue. Newer PCR based tools have higher sensitivity and specificity. Emergence of PKDL has been reported in HIV affected individuals and may become a problem in future.
Sodium stibogluconate alone or in combination with rifampicin is used for the treatment of PKDL for a long course of up to 4 months. Compliance can be an issue for such a long course.