Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It can be asymptomatic, but these symptoms may be present:
- Fatigue
- Headache
- High blood pressure
- Hypokalemia
- Hypernatraemia
- Hypomagnesemia
- Intermittent or temporary paralysis
- Muscle spasms
- Muscle weakness
- Numbness
- Polyuria
- Polydipsia
- Tingling
- Metabolic alkalosis
Most affected cats present with muscular weakness and/or ocular signs of hypertension. Signs of muscle weakness can include a plantigrade stance of the hindlimbs, cervical ventroflexion, inability to jump, lateral recumbency, or collapse. Ocular signs of arterial hypertension include mydriasis, hyphema, or blindness due to retinal detachment and/or intraocular hemorrhages. A palpable mass in the cranial abdomen is another potential finding.
The causes of primary hyperaldosteronism are adrenal hyperplasia and adrenal adenoma (Conn's syndrome).
These cause hyperplasia of aldosterone-producing cells of the adrenal cortex resulting in primary hyperaldosteronism.
The causes of secondary hyperaldosteronism are massive ascites, left ventricular failure, and cor pulmonale.
These act either by decreasing circulating fluid volume or by decreasing cardiac output, with resulting increase in renin release leading to secondary hyperaldosteronism.
People often have few or no symptoms. They may get occasional muscular weakness, muscle spasms, tingling sensations, or excessive urination.
High blood pressure, manifestations of muscle cramps (due to hyperexcitability of neurons secondary to low blood calcium), muscle weakness (due to hypoexcitability of skeletal muscles secondary to hypokalemia), and headaches (due to low blood potassium or high blood pressure) may be seen.
Secondary hyperaldosteronism is often related to decreased cardiac output which is associated with elevated renin levels.
Patients with GRA may be asymptomatic, but the following symptoms can be present:
- Fatigue
- Headache
- High blood pressure
- Hypokalemia
- Intermittent or temporary paralysis
- Muscle spasms
- Muscle weakness
- Numbness
- Polyuria
- Polydipsia
- Tingling
- Hypernatraemia
- Metabolic alkalosis
Feline hyperaldosteronism is a disease in cats. The symptoms are caused by abnormally high concentrations of the hormone aldosterone, which is secreted by the adrenal gland. The high concentrations of aldosterone may be due directly to a disorder of the adrenal gland (primary hyperadlosteronism), or due to something outside of the adrenal gland causing it to secrete excessive aldosterone (secondary hyperaldosteronism).
Primary aldosteronism, also known as primary hyperaldosteronism or Conn's syndrome, is excess production of the hormone aldosterone by the adrenal glands resulting in low renin levels. Often it produces few symptoms. Most people have high blood pressure which may cause poor vision or headaches. Occasionally there may be muscular weakness, muscle spasms, tingling sensations, or excessive urination. Complications include cardiovascular disease such as stroke, myocardial infarction, kidney failure, and abnormal heart rhythms.
Primary hyperaldosteronism has a number of causes. About 66% of cases are due to enlargement of both adrenal glands and 33% of cases are due to an adrenal adenoma that produces aldosterone. Other uncommon causes include adrenal cancer and an inherited disorder called familial hyperaldosteronism. Some recommend screening people with high blood pressure who are at increased risk while others recommend screening all people with high blood pressure for the disease. Screening is usually done by measuring the aldosterone-to-renin ratio in the blood with further testing used to confirm positive results. While low blood potassium is classically described this is only present in about a quarter of people. To determine the underlying cause medical imaging is carried out.
Some cases may be cured by removing the adenoma by surgery. A single adrenal gland may also be removed in cases where only one is enlarged. In cases due to enlargement of both glands treatment is typically with medications known as aldosterone antagonists such as spironolactone or eplerenone. Other medications for high blood pressure and a low salt diet may also be needed. Some people with familial hyperaldosteronism may be treated with the steroid dexamethasone.
Primary aldosteronism is present in about 10% of people with high blood pressure. It occurs more often in women than men. Often it begins in those between 30 and 50 years of age. Conn's syndrome is named after Jerome W. Conn (1907–1994), the American endocrinologist who first described adenomas as a cause of the condition in 1955.
This condition is characterized by hypertension, kaliuresis and reduced plasma renin.
Familial hyperaldosteronism is a group of inherited conditions in which the adrenal glands, which are small glands located on top of each kidney, produce too much of the hormone aldosterone. Excess aldosterone causes the kidneys to retain more salt than normal, which in turn increases the body's fluid levels and causes high blood pressure. People with familial hyperaldosteronism may develop severe high blood pressure, often early in life. Without treatment, hypertension increases the risk of strokes, heart attacks, and kidney failure. There are other forms of hyperaldosteronism that are not inherited.
Familial hyperaldosteronism is categorized into three types, distinguished by their clinical features and genetic causes. In familial hyperaldosteronism type I, hypertension generally appears in childhood to early adulthood and can range from mild to severe. This type can be treated with steroid medications called glucocorticoids, so it is also known as glucocorticoid-remediable aldosteronism (GRA). In familial hyperaldosteronism type II, hypertension usually appears in early to middle adulthood and does not improve with glucocorticoid treatment. In most individuals with familial hyperaldosteronism type III, the adrenal glands are enlarged up to six times their normal size. These affected individuals have severe hypertension that starts in childhood. The hypertension is difficult to treat and often results in damage to organs such as the heart and kidneys. Rarely, individuals with type III have milder symptoms with treatable hypertension and no adrenal gland enlargement.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes.
It is unclear how common these diseases are. All together they appear to make up less than 1% of cases of hyperaldosteronism.
Glucocorticoid remediable aldosteronism (GRA), also describable as "aldosterone synthase hyperactivity", is an autosomal dominant disorder in which the increase in aldosterone secretion produced by ACTH is no longer transient.
It is a cause of primary hyperaldosteronism.
Pseudohyperaldosteronism (also pseudoaldosteronism) is a medical condition that mimics hyperaldosteronism. Like hyperaldosteronism, it produces hypertension associated with low plasma renin activity, and metabolic alkalosis associated with hypokalemia. Unlike hyperaldosteronism, it involves aldosterone levels that are normal or low (hypoaldosteronism).
Children with Liddle syndrome are frequently asymptomatic. The first indication of the syndrome often is the incidental finding of hypertension during a routine physical exam. Because this syndrome is rare, it may only be considered by the treating physician after the child's hypertension does not respond to medications for lowering blood pressure.
Adults could present with nonspecific symptoms of low blood potassium, which can include weakness, fatigue, palpitations or muscular weakness (shortness of breath, constipation/abdominal distention or exercise intolerance). Additionally, long-standing hypertension could become symptomatic.
Apparent mineralocorticoid excess (AME) is an autosomal recessive disorder causing hypertension (high blood pressure) and hypokalemia (abnormally low levels of potassium). It was found by Dr Maria L. New at Weil Cornell Hospital in New York City. It results from mutations in the "HSD11B2" gene, which encodes the kidney isozyme of 11β-hydroxysteroid dehydrogenase type 2. In an unaffected individual, this isozyme inactivates circulating cortisol to the less active metabolite cortisone. The inactivating mutation leads to elevated local concentrations of cortisol in the aldosterone sensitive tissues like the kidney. Cortisol at high concentrations can cross-react and activate the mineralocorticoid receptor due to the non-selectivity of the receptor, leading to aldosterone-like effects in the kidney. This is what causes the hypokalemia, hypertension, and hypernatremia associated with the syndrome. Patients often present with severe hypertension and end-organ changes associated with it like left ventricular hypertrophy, retinal, renal and neurological vascular changes along with growth retardation and failure to thrive. In serum both aldosterone and renin levels are low
Liddle's syndrome, also called Liddle syndrome is a genetic disorder inherited in an autosomal dominant manner that is characterized by early, and frequently severe, high blood pressure associated with low plasma renin activity, metabolic alkalosis, low blood potassium, and normal to low levels of aldosterone. Liddle syndrome involves abnormal kidney function, with excess reabsorption of sodium and loss of potassium from the renal tubule, and is treated with a combination of low sodium diet and potassium-sparing diuretic drugs (e.g. amiloride). It is extremely rare, with fewer than 30 pedigrees or isolated cases having been reported worldwide as of 2008.
This disorder presents similarly to hyperaldosteronism, leading to feedback inhibition of aldosterone. Common symptoms include hypertension, hypokalemia, metabolic alkalosis, and low plasma renin activity.
Mild hypokalemia is often without symptoms, although it may cause elevation of blood pressure, and can provoke the development of an abnormal heart rhythm. Severe hypokalemia, with serum potassium concentrations of 2.5–3 meq/l (Nl: 3.5–5.0 meq/l), may cause muscle weakness, myalgia, tremor, and muscle cramps (owing to disturbed function of skeletal muscle), and constipation (from disturbed function of smooth muscle). With more severe hypokalemia, flaccid paralysis and hyporeflexia may result. Reports exist of rhabdomyolysis occurring with profound hypokalemia with serum potassium levels less than 2 meq/l. Respiratory depression from severe impairment of skeletal muscle function is found in many patients.
Because of the ubiquity of arsenic in ground water supplies and its effect on cardiovascular health, low dose arsenic poisoning should be inferred as a part of the pathogenesis of idiopathic hypertension. Idiopathic and essential are both somewhat synonymous with primary hypertension. Arsenic exposure has also many of the same signs of primary hypertension such as headache, somnolence,
confusion, proteinuria
visual disturbances, and nausea and vomiting
Hypokalemia can result from one or more of these medical conditions:
The neuromuscular symptoms of hypercalcemia are caused by a negative bathmotropic effect due to the increased interaction of calcium with sodium channels. Since calcium blocks sodium channels and inhibits depolarization of nerve and muscle fibers, increased calcium raises the threshold for depolarization. This results in diminished deep tendon reflexes (hyporeflexia), and skeletal muscle weakness. There is a general mnemonic for remembering the effects of hypercalcaemia: "Stones, Bones, Groans, Thrones and Psychiatric Overtones"
- Stones (renal or biliary) (see calculus)
- Bones (bone pain)
- Groans (abdominal pain, nausea and vomiting)
- Thrones (polyuria) resulting in dehydration
- Psychiatric overtones (Depression 30–40%, anxiety, cognitive dysfunction, insomnia, coma)
Other symptoms include cardiac arrhythmias (especially in those taking digoxin), fatigue, nausea, vomiting (emesis), anorexia, abdominal pain, constipation, & paralytic ileus. If renal impairment occurs as a result, manifestations can include polyuria, nocturia, and polydipsia. Psychiatric manifestation can include emotional instability, confusion, delirium, psychosis, & stupor. Limbus sign seen in eye due to hypercalcemia.
Hypercalcemia can result in an increase in heart rate and a positive inotropic effect (increase in contractility).
Symptoms are more common at high calcium blood values (12.0 mg/dL or 3 mmol/l). Severe hypercalcaemia (above 15–16 mg/dL or 3.75–4 mmol/l) is considered a medical emergency: at these levels, coma and cardiac arrest can result. The high levels of calcium ions decrease the neuron membrane permeability to sodium ions, thus decreasing excitability, which leads to hypotonicity of smooth and striated muscle. This explains the fatigue, muscle weakness, low tone and sluggish reflexes in muscle groups. The sluggish nerves also explain drowsiness, confusion, hallucinations, stupor and / or coma. In the gut this causes constipation. Hypocalcaemia causes the opposite by the same mechanism.
Another common and under-recognized sign of hypertension is sleep apnea, which is often best treated with nocturnal nasal continuous positive airway pressure (CPAP), but other approaches include the Mandibular advancement splint (MAS), UPPP, tonsillectomy, adenoidectomy, septoplasty, or weight loss.
Another cause is an exceptionally rare neurological disease called Binswanger's disease, causing dementia; it is a rare form of multi-infarct dementia, and is one of the neurological syndromes associated with hypertension.
Primary hyperparathyroidism and malignancy account for about 90% of cases of hypercalcaemia.
Adrenocortical hyperfunction is a condition where there is an overexpression of products of the adrenal cortex.
When cortisol is overproduced, it is called Cushing's syndrome.
When aldosterone is overproduced, it is called hyperaldosteronism.
The major symptom is thirst. The most important signs result from brain cell shrinkage and include confusion, muscle twitching or spasms. With severe elevations, seizures and comas may occur.
Severe symptoms are usually due to acute elevation of the plasma sodium concentration to above 157 mmol/L (normal blood levels are generally about 135–145 mmol/L for adults and elderly). Values above 180 mmol/L are associated with a high mortality rate, particularly in adults. However, such high levels of sodium rarely occur without severe coexisting medical conditions. Serum sodium concentrations have ranged from 150–228 mmol/L in survivors of acute salt overdosage, while levels of 153–255 mmol/L have been observed in fatalities. Vitreous humor is considered to be a better postmortem specimen than postmortem serum for assessing sodium involvement in a death.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes. Familial hyperaldosteronism type I is caused by the abnormal joining together (fusion) of two similar genes called CYP11B1 and CYP11B2, which are located close together on chromosome 8. These genes provide instructions for making two enzymes that are found in the adrenal glands.
The CYP11B1 gene provides instructions for making an enzyme called 11-beta-hydroxylase. This enzyme helps produce hormones called cortisol and corticosterone. The CYP11B2 gene provides instructions for making another enzyme called aldosterone synthase, which helps produce aldosterone. When CYP11B1 and CYP11B2 are abnormally fused together, too much aldosterone synthase is produced. This overproduction causes the adrenal glands to make excess aldosterone, which leads to the signs and symptoms of familial hyperaldosteronism type I.
Familial hyperaldosteronism type III is caused by mutations in the KCNJ5 gene. The KCNJ5 gene provides instructions for making a protein that functions as a potassium channel, which means that it transports positively charged atoms (ions) of potassium into and out of cells. In the adrenal glands, the flow of ions through potassium channels produced from the KCNJ5 gene is thought to help regulate the production of aldosterone. Mutations in the KCNJ5 gene likely result in the production of potassium channels that are less selective, allowing other ions (predominantly sodium) to pass as well. The abnormal ion flow results in the activation of biochemical processes (pathways) that lead to increased aldosterone production, causing the hypertension associated with familial hyperaldosteronism type III.
The genetic cause of familial hyperaldosteronism type II is unknown.
In those with low volume or hypovolemia:
- Inadequate intake of free water associated with total body sodium depletion. Typically in elderly or otherwise disabled patients who are unable to take in water as their thirst dictates and also are sodium depleted. This is the most common cause of hypernatremia.
- Excessive losses of water from the urinary tract – which may be caused by glycosuria, or other osmotic diuretics – leads to a combination of sodium and free water losses.
- Water losses associated with extreme sweating.
- Severe watery diarrhea