Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms include poor growth, loss of muscle coordination, muscle weakness, visual problems, hearing problems, learning disabilities, heart disease, liver disease, kidney disease, gastrointestinal disorders, respiratory disorders, neurological problems, autonomic dysfunction and dementia. Acquired conditions in which mitochondrial dysfunction has been involved are: diabetes, Huntington's disease, cancer, Alzheimer's disease, Parkinson's disease, bipolar disorder, schizophrenia, aging and senescence, anxiety disorders, cardiovascular disease, sarcopenia, chronic fatigue syndrome.
The body, and each mutation, is modulated by other genome variants; the mutation that in one individual may cause liver disease might in another person cause a brain disorder. The severity of the specific defect may also be great or small. Some minor defects cause only "exercise intolerance", with no serious illness or disability. Defects often affect the operation of the mitochondria and multiple tissues more severely, leading to multi-system diseases.
As a rule, mitochondrial diseases are worse when the defective mitochondria are present in the muscles, cerebrum, or nerves, because these cells use more energy than most other cells in the body.
Although mitochondrial diseases vary greatly in presentation from person to person, several major clinical categories of these conditions have been defined, based on the most common phenotypic features, symptoms, and signs associated with the particular mutations that tend to cause them.
An outstanding question and area of research is whether ATP depletion or reactive oxygen species are in fact responsible for the observed phenotypic consequences.
Cerebellar atrophy or hypoplasia has sometimes been reported to be associated.
The syndrome causes cerebellar ataxia (balance and coordination problems), mental retardation, congenital cataracts in early childhood, muscle weakness, inability to chew food, thin brittle fingernails, and sparse hair.
Small stature, mild to severe mental retardation and dysarthria (slow, imprecise speech) are usually present.
Various skeletal abnormalities (e.g., curvature of the spine) and hypergonadotropic hypogonadism often occur.
Muscle weakness is progressive, but life expectancy is near normal.
All forms of MDDS are very rare. MDDS causes a wide range of symptoms, which can appear in newborns, infants, children, or adults, depending on the class of MDDS; within each class symptoms are also diverse.
In MDDS associated with mutations in "TK2", infants generally develop normally, but by around two years of age, symptoms of general muscle weakness (called "hypotonia"), tiredness, lack of stamina, and difficulty feeding begin to appear. Some toddlers start to lose control of the muscles in their face, mouth, and throat, and may have difficulty swallowing. Motor skills that had been learned may be lost, but generally the functioning of the brain and ability to think are not affected.
In MDDS associated with mutations in "SUCLA2" or "SUCLG1" that primarily affect the brain and muscle, hypotonia generally arises in infants before they are 6 months old, their muscles begin wasting away, and there is delay in psychomotor learning (learning basic skills like walking, talking, and intentional, coordinated movement). The spine often begins to curve (scoliosis or kyphosis), and the child often has abnormal movements (dystonia, athetosis or chorea), difficulty feeding, acid reflux, hearing loss, stunted growth, and difficulty breathing that can lead to frequent lung infections. Sometime epilepsy develops.
In MDDS associated with mutations in "RRM2B" that primarily affect the brain and muscle, there is again hypotonia in the first months, symptoms of lactic acidosis like nausea, vomiting, and rapid deep breathing, failure to thrive including the head remaining small, delay or regression in moving, and hearing loss. Many body systems are affected.
In MDDS associated with mutations in "DGUOK" that primarily affect the brain and the liver, there are two forms. There is an early-onset form in which symptoms arise from problems in many organs in the first week of life, especially symptoms of lactic acidosis as well as low blood sugar. Within weeks of birth they can develop liver failure and the associated jaundice and abdominal swelling, and many neurological problems including developmental delays and regression, and uncontrolled eye movement. Rarely within class of already rare diseases, symptoms only relating to liver disease emerge later in infancy or in childhood.
In MDDS associated with mutations in "MPV17" that primarily affect the brain and the liver, the symptoms are similar to those caused by DGUOK and also emerge shortly after birth, generally with fewer and less severe neurological problems. There is a subset of people of Navajo descent who develop Navajo neurohepatopathy, who in addition to these symptoms also have easily broken bones that do not cause pain, deformed hands or feet, and problems with their corneas.
In MDDS associated with mutations in "POLG" that primarily affect the brain and the liver, the symptoms are very diverse and can emerge anytime from shortly after birth to old age. The first signs of the disease, which include intractable seizures and failure to meet meaningful developmental milestones, usually occur in infancy, after the first year of life, but sometimes as late as the fifth year. Primary symptoms of the disease are developmental delay, progressive intellectual disability, hypotonia (low muscle tone), spasticity (stiffness of the limbs) possibly leading to quadriplegia, and progressive dementia. Seizures may include epilepsia partialis continua, a type of seizure that consists of repeated myoclonic (muscle) jerks. Optic atrophy may also occur, often leading to blindness. Hearing loss may also occur. Additionally, although physical signs of chronic liver dysfunction may not be present, many people suffer liver impairment leading to liver failure.
In MDDS associated with mutations in "PEO1"/"C10orf2" that primarily affect the brain and the liver, symptoms emerge shortly after birth or in early infancy, with hypotonia, symptoms of lactic acidosis, enlarged liver, feeding problems, lack of growth, and delay of psychomotor skills. Neurologically, development is slowed or stopped, and epilepsy emerges, as do sensory problems like loss of eye control and deafness, and neuromuscular problems like a lack of reflexes, muscular atrophy, and twitching, and epilepsy.
In MDDS associated with mutations in the genes associated with mutations in "ECGF1"/"TYMP" that primarily affects the brain and the gastrointestinal tract, symptoms can emerge any time in the first fifty years of life; most often they emerge before the person turns 20. Weight loss is common as is a lack of the ability of the stomach and intestines to automatically expand and contract and thus move through it (called gastrointestinal motility) – this leads to feeling full after eating only small amounts of food, nausea, acid reflux, All affected individuals develop weight loss and progressive gastrointestinal dysmotility manifesting as early satiety, nausea, diarrhea, vomiting, and stomach pain and swelling. People also develop neuropathy, with weakness and tingling. There are often eye problems, and intellectual disability.
As characterized in Kearns' original publication in 1965 and in later publications, inconsistent features of KSS that may occur are weakness of facial, pharyngeal, trunk, and extremity muscles, hearing loss, small stature, electroencephalographic changes, cerebellar ataxia and elevated levels of cerebrospinal fluid protein.
Learning disabilities and developmental delays are often seen in children with NARP, and older individuals with this condition may experience a loss of intellectual function (dementia). Other features of NARP include seizures, hearing loss, and abnormalities of the electrical signals that control the heartbeat (cardiac conduction defects). These signs and symptoms vary among affected individuals.
MELAS is a condition that affects many of the body's systems, particularly the brain and nervous system (encephalo-) and muscles (myopathy). In most cases, the signs and symptoms of this disorder appear in childhood following a period of normal development. Early symptoms may include muscle weakness and pain, recurrent headaches, loss of appetite, vomiting, and seizures. Most affected individuals experience stroke-like episodes beginning before age 40. These episodes often involve temporary muscle weakness on one side of the body (hemiparesis), altered consciousness, vision abnormalities, seizures, and severe headaches resembling migraines. Repeated stroke-like episodes can progressively damage the brain, leading to vision loss, problems with movement, and a loss of intellectual function (dementia). The stroke-like episodes can be mis-diagnosed as epilepsy by a doctor not aware of the MELAS condition.
Most people with MELAS have a buildup of lactic acid in their bodies, a condition called lactic acidosis. Increased acidity in the blood can lead to vomiting, abdominal pain, extreme tiredness (fatigue), muscle weakness, loss of bowel control, and difficulty breathing. Less commonly, people with MELAS may experience involuntary muscle spasms (myoclonus), impaired muscle coordination (ataxia), hearing loss, heart and kidney problems, diabetes, epilepsy, and hormonal imbalances.
The presentation of some cases is similar to that of Kearns-Sayre syndrome.
The symptoms of Leigh syndrome are classically described as beginning in infancy and leading to death within a span of several years; however, as more cases are recognized, it is apparent that symptoms can emerge at any age—including adolescence or adulthood—and patients can survive for many years following diagnosis. Symptoms are often first seen after a triggering event that taxes the body's energy production, such as an infection or surgery. The general course of Leigh syndrome is one of episodic developmental regression during times of metabolic stress. Some patients have long periods without disease progression while others develop progressive decline.
Infants with the syndrome have symptoms that include diarrhea, vomiting, and dysphagia (trouble swallowing or sucking), leading to a failure to thrive. Children with early Leigh disease also may appear irritable and cry much more than usual. Seizures are often seen. Excess lactate may be seen in the urine, cerebrospinal fluid, and blood of a person with Leigh syndrome.
As the disease progresses, the muscular system is debilitated throughout the body, as the brain cannot control the contraction of muscles. Hypotonia (low muscle tone and strength), dystonia (involuntary, sustained muscle contraction), and ataxia (lack of control over movement) are often seen in people with Leigh disease. The eyes are particularly affected; the muscles that control the eyes become weak, paralyzed, or uncontrollable in conditions called ophthalmoparesis (weakness or paralysis) and nystagmus (involuntary eye movements). Slow saccades are also sometimes seen. The heart and lungs can also fail as a result of Leigh disease. Hypertrophic cardiomyopathy (thickening of part of the heart muscle) is also sometimes found and can cause death; asymmetric septal hypertrophy has also been associated with Leigh syndrome. In children with Leigh-syndrome associated ventricular septal defects, caused by pyruvate dehydrogenase deficiency, high forehead and large ears are seen; facial abnormalities are not typical of Leigh syndrome.
However, respiratory failure is the most common cause of death in people with Leigh syndrome. Other neurological symptoms include peripheral neuropathy, loss of sensation in extremities caused by damage to the peripheral nervous system.
Hypertrichosis is seen in Leigh syndrome caused by mutations in the nuclear gene SURF1.
These most often occur years after the development of ptosis and ophthalmoplegia. Atrioventricular(abbreviated "AV") block is the most common cardiac conduction deficit. This often progresses to a Third-degree atrioventricular block, which is a complete blockage of the electrical conduction from the atrium to the ventricle. Symptoms of heart block include syncope, exercise intolerance, and bradycardia
Examples of mitochondrial diseases include:
- Mitochondrial myopathy
- Diabetes mellitus and deafness (DAD)
- this combination at an early age can be due to mitochondrial disease
- Diabetes mellitus and deafness can be found together for other reasons
- Leber's hereditary optic neuropathy (LHON)
- visual loss beginning in young adulthood
- eye disorder characterized by progressive loss of central vision due to degeneration of the optic nerves and retina
- affects 1 in 50,000 people in Finland
- Leigh syndrome, subacute sclerosing encephalopathy
- after normal development the disease usually begins late in the first year of life, although onset may occur in adulthood
- a rapid decline in function occurs and is marked by seizures, altered states of consciousness, dementia, ventilatory failure
- Neuropathy, ataxia, retinitis pigmentosa, and ptosis (NARP)
- progressive symptoms as described in the acronym
- dementia
- Myoneurogenic gastrointestinal encephalopathy (MNGIE)
- gastrointestinal pseudo-obstruction
- neuropathy
- Myoclonic Epilepsy with Ragged Red Fibers (MERRF)
- progressive myoclonic epilepsy
- "Ragged Red Fibers" are clumps of diseased mitochondria that accumulate in the subsarcolemmal region of the muscle fiber and appear when muscle is stained with modified Gömöri trichrome stain
- short stature
- hearing loss
- lactic acidosis
- exercise intolerance
- Mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like symptoms (MELAS)
- mtDNA depletion
- mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)
"Conditions such as Friedreich's ataxia can affect the mitochondria but are not associated with mitochondrial proteins."
The combination of muscular hypotonia and fixed dilated pupils in infancy is suspicious of Gillespie syndrome. Early onset partial aniridia, cerebellar ataxia, and mental retardation are hallmark of syndrome. The iris abnormality is specific and seems pathognomonic of Gillespie syndrome. The aniridia consisting of a superior coloboma and inferior iris hypoplasia, foveomacular dysplasia.
Atypical Gillespie syndrome associated with bilateral ptosis, exotropia, correctopia, iris hypoplasia, anterior capsular lens opacities, foveal hypoplasia, retinal vascular tortuosity, and retinal hypopigmentation.
Neurological signs ar nystagmus, mild craniofacial asymmetry, axial hypotonia, developmental delay, and mild mental retardation. Mariën P did not support the prevailing view of a global mental retardation as a cardinal feature of Gillespie syndrome but primarily reflect cerebellar induced neurobehavioral dysfunctions following disruption of the cerebrocerebellar anatomical circuitry that closely resembles the "cerebellar cognitive and affective syndrome" (CeCAS).
Congenital pulmonary stenosis and helix dysplasia can be associated.
Diagnosis of MSS is based on clinical symptoms, magnetic resonance imaging (MRI) of the brain (cerebellar atrophy particularly involving the cerebellar vermis), and muscle biopsy.
It can be associated with mutations of the SIL1 gene, and a mutation can be found in about 50% of cases.
Differential diagnosis includes Congenital Cataracts Facial Dysmorphism Neuropathy (CCFDN), Marinesco–Sjögren like syndrome with chylomicronemia, carbohydrate deficient glycoprotein syndromes, Lowe syndrome, and mitochondrial disease.
Like other mitochrondrial diseases, "MNGIE is a multisystem disorder". MNGIE primarily affects the gastrointestinal and neurological systems. Gastrointestinal symptoms may include gastrointestinal dysmotility, due to inefficient peristalsis, which may result in pseudo-obstruction and cause malabsorption of nutrients. Additionally, gastrointestinal symptoms such as borborygmi, early satiety, diarrhea, constipation, gastroparesis, nausea, vomiting, weight loss, and diverticulitis may be present in MNGIE patients. Neurological symptoms may include diffuse leukoencephalopathy, peripheral neuropathy, and myopathy. Ocular symptoms may include retinal degeneration, ophthalmoplegia, and ptosis. Those with MNGIE are often thin and experience continuous weight loss. The characteristic thinness of MNGIE patients is caused by multiple factors including inadequate caloric intake due to gastrointestinal symptoms and discomfort, malabsorption of food from bacterial overgrowth due to decreased motility, as well as an increased metabolic demand due to inefficient production of ATP by the mitochondria.
MDDS are a group of genetic disorders that share a common pathology — a lack of functioning DNA in mitochondria. There are generally four classes of MDDS:
- a form that primarily affects muscle associated with mutations in the "TK2" gene;
- a form that primarily affects the brain and muscle associated with mutations in the genes "SUCLA2", "SUCLG1", or "RRM2B";
- a form that primarily affects the brain and the liver associated with mutations in "DGUOK", "MPV17", "POLG", or "PEO1" (also called "C10orf2"); and
- a form that primarily affects the brain and the gastrointestinal tract associated with mutations in "ECGF1" (also called "TYMP").
Neuropathy, ataxia, and retinitis pigmentosa, also known as NARP syndrome, is a rare disease with mitochondrial inheritance that causes a variety of signs and symptoms chiefly affecting the nervous system Beginning in childhood or early adulthood, most people with NARP experience numbness, tingling, or pain in the arms and legs (sensory neuropathy); muscle weakness; and problems with balance and coordination (ataxia). Many affected individuals also have vision loss caused by changes in the light-sensitive tissue that lines the back of the eye (the retina). In some cases, the vision loss results from a condition called retinitis pigmentosa. This eye disease causes the light-sensing cells of the retina gradually to deteriorate.
Leigh syndrome (also called Leigh disease and subacute necrotizing encephalomyelopathy) is an under-recognized inherited neurometabolic disorder that affects the central nervous system. It is named after Archibald Denis Leigh, a British neuropsychiatrist who first described the condition in 1951.
Signs and symptoms include (for each of the following causes):
- Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like syndrome (MELAS)
- Varying degrees of cognitive impairment and dementia
- Lactic acidosis
- Strokes
- Transient ischemic attacks
- Hearing loss
- Weight loss
- Myoclonic epilepsy and ragged-red fibers (MERRF)
- Progressive myoclonic epilepsy
- Clumps of diseased mitochondria accumulate in muscle fibers and appear as "ragged-red fibers" when muscle is stained with modified Gömöri trichrome stain
- Short stature
- Kearns-Sayre syndrome (KSS)
- External ophthalmoplegia
- Cardiac conduction defects
- Sensorineural hearing loss
- Chronic progressive external ophthalmoplegia (CPEO)
- Progressive ophthalmoparesis
- Symptomatic overlap with other mitochondrial myopathies
Mitochondrial neurogastrointestinal encephalopathy syndrome (MNGIE) is a rare autosomal recessive mitochondrial disease. It has been previously referred to as polyneuropathy, ophthalmoplegia, leukoencephalopathy, and POLIP syndrome. The disease presents in childhood, but often goes unnoticed for decades. Unlike typical mitochondrial diseases caused by mitochondrial DNA (mtDNA) mutations, MNGIE is caused by mutations in the TYMP gene, which encodes the enzyme thymidine phosphorylase. Mutations in this gene result in impaired mitochondrial function, leading to intestinal symptoms as well as neuro-ophthalmologic abnormalities. "A secondary form of MNGIE, called MNGIE without leukoencephalopathy, can be caused by mutations in the POLG gene".
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the family of mitochondrial cytopathies, which also include MERRF, and Leber's hereditary optic neuropathy. It was first characterized under this name in 1984. A feature of these diseases is that they are caused by defects in the mitochondrial genome which is inherited purely from the female parent. However, it is important to know that some of the proteins essential to normal mitochondrial function are produced by the nuclear genome, and are subsequently transported to the mitochondria for use. As such, mutations in these proteins can result in mitochondrial disorders, but can be inherited from both male and female parent in the typical fashion. The disease can manifest in both sexes.
De Barsy syndrome is a rare autosomal recessive genetic disorder. Symptoms include cutis laxa (loose hanging skin) as well as other eye, musculoskeletal, and neurological abnormalities. It is usually progressive, manifesting side effects that can include clouded corneas, cataracts, short stature, dystonia, or progeria (premature aging).
It was first described in 1967 by De Barsy et al. and, as of 2011, there have been 27 cases reported worldwide. The genes that cause De Barsy syndrome have not been identified yet, although several studies have narrowed down the symptoms' cause. A study by Reversade et al. has shown that a mutation in PYCR1, the genetic sequence that codes for mitochondrial enzymes that break down proline, are prevalent in cases of autosomal recessive cutis laxa (ARCL), a condition very similar to De Barsy syndrome. A study by Leao-Teles et al. has shown that De Barsy syndrome may be related to mutations in ATP6V0A2 gene, known as ATP6V0A2-CDG by the new naming system.
Alternative names for De Barsy syndrome include corneal clouding-cutis laxa-mental retardation, cutis laxa-growth deficiency syndrome, De Barsy–Moens–Diercks syndrome, and progeroid syndrome of De Barsy.
There are three main disorders caused by Hermansky–Pudlak syndrome, which result in these symptoms:
- Albinism and eye problems: Individuals will have varying amounts of skin pigment (melanin). Because of the albinism there are eye problems such as light sensitivity (photophobia), strabismus (crossed eyes), and nystagmus (involuntary eye movements). Hermansky–Pudlak syndrome also impairs vision.
- Bleeding disorders: Individuals with the syndrome have platelet dysfunction. Since platelets are necessary for blood clotting, individuals will bruise and bleed easily.
- Cellular storage disorders: The syndrome causes a wax-like substance (ceroid) to accumulate in the body tissues and cause damage, especially in the lungs and kidneys.
It is also associated with granulomatous colitis, an inflammation of the colon, and with pulmonary fibrosis, a potentially fatal lung disease.
An individual displaying MERRFs syndrome will manifest not only a single symptom, but regularly patients display more than one affected body part at a time. It has been observed that patients with MERRF syndrome will primarily display Myoclonus as a first symptom, along with it they can also manifest seizures, cerebellar ataxia and myopathy. Secondary features include dementia, optic atrophy, bilateral deafness, peripheral neuropathy, spasticity or multiple lipomata. Additional symptoms include dementia, optic atrophy, bilateral deafness and peripheral neuropathy, spasticity, lipomatosis, and/or cardiomyopathy with wolff parkinson-white syndrome. Most patients will not exhibit all of these symptoms, however more than one of these symptoms will be present in a patient who has been diagnosed with MERRFS disease. Due to the multi-symptoms presented by the individual, the severity of the syndrome is very difficult to evaluate. Mitochondrial disorders may present at any age, and this holds truth for MERRS, since it forms part of them. Therefore, if a patient is presenting some of these symptoms, the doctor is able to narrow it down to MEERF mitochondrial disorder.
A detailed family history should be obtained from at least three generations. In particularly a history to determine if there has been any neonatal and childhood deaths: Also a way to determine if any one of the family members exhibit any of the features of the multi-system disease. Specifically if there has been a maternal inheritance, when the disease is transmitted to females only, or if there is a family member who experienced a multi system involvement such as: Brain condition that a family member has been record to have such asseizures, dystonia, ataxia, or stroke like episodes.The eyes with optic atrophy, the skeletal muscle where there has been a history of myalgia, weakness or ptosis. Also in the family history look for neuropathy and dysautonomia, or observe heart conditions such ascardiomyopathy. The patients history might also exhibit a problem in their kidney, such as proximal nephron dysfunction. An endocrine condition, for example diabetes and hypoparathyroidism. The patient might have also had gastrointestinal condition which could have been due to liver disease, episodes of nausea or vomiting. Multiple lipomas in the skin, sideroblastic anemia and pancytopenia in the metabolic system or short stature might all be examples of patients with possible symptoms of MERRF disease.
Due to the wide range of genetic disorders that are presently known, diagnosis of a genetic disorder is widely varied and dependent of the disorder. Most genetic disorders are diagnosed at birth or during early childhood, however some, such as Huntington's disease, can escape detection until the patient is well into adulthood.
The basic aspects of a genetic disorder rests on the inheritance of genetic material. With an in depth family history, it is possible to anticipate possible disorders in children which direct medical professionals to specific tests depending on the disorder and allow parents the chance to prepare for potential lifestyle changes, anticipate the possibility of stillbirth, or contemplate termination. Prenatal diagnosis can detect the presence of characteristic abnormalities in fetal development through ultrasound, or detect the presence of characteristic substances via invasive procedures which involve inserting probes or needles into the uterus such as in amniocentesis.
A genetic disorder is a genetic problem caused by one or more abnormalities in the genome, especially a condition that is present from birth (congenital). Most genetic disorders are quite rare and affect one person in every several thousands or millions.
Genetic disorders may be hereditary, passed down from the parents' genes. In other genetic disorders, defects may be caused by new mutations or changes to the DNA. In such cases, the defect will only be passed down if it occurs in the germ line. The same disease, such as some forms of cancer, may be caused by an inherited genetic condition in some people, by new mutations in other people, and mainly by environmental causes in other people. Whether, when and to what extent a person with the genetic defect or abnormality will actually suffer from the disease is almost always affected by the environmental factors and events in the person's development.
Some types of recessive gene disorders confer an advantage in certain environments when only one copy of the gene is present.
The symptoms are visible within the first week of life and if not detected and diagnosed correctly immediately consequences are fatal.