Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most effective way to detect fasciculations may be surface electromyography (EMG). Surface EMG is more sensitive than needle electromyography and clinical observation in the detection of fasciculation in people with amyotrophic lateral sclerosis.
A fasciculation , or muscle twitch, is a small, local, involuntary muscle contraction and relaxation which may be visible under the skin. Deeper areas can be detected by electromyography (EMG) testing, though they can happen in any skeletal muscle in the body. Fasciculations arise as a result of "spontaneous depolarization" of a lower motor neuron leading to the synchronous contraction of all the skeletal muscle fibers within a single motor unit. An example of normal spontaneous depolarization is the constant contractions of cardiac muscle, causing the heart to beat. Usually, intentional movement of the involved muscle causes fasciculations to cease immediately, but they may return once the muscle is at rest again.
Fasciculations have a variety of causes, the majority of which are benign, but can also be due to disease of the motor neurons. They are encountered by virtually all healthy people, though for most, it is quite infrequent. In some cases, the presence of fasciculations can be annoying and interfere with quality of life. If a neurological examination is otherwise normal and EMG testing does not indicate any additional pathology, a diagnosis of benign fasciculation syndrome is usually made.
The main symptom of benign fasciculation syndrome is focal or widespread involuntary muscle activity (twitching), which can occur at random or specific times (or places). Presenting symptoms of benign fasciculation syndrome may include:
- Fasciculations (primary symptom)
- Blepharospasms (eye spasms)
- Generalized fatigue
- Muscle pain
- Anxiety (which can also be a cause)
- Exercise intolerance
- Globus sensation
- Paraesthesias
- Muscle cramping or spasms
Other symptoms include:
- Hyperreflexia
- Muscle stiffness
- Tremors
- Itching
- Myoclonic jerks
BFS symptoms are typically present when the muscle is at rest and are not accompanied by severe muscle weakness. In some BFS cases, fasciculations can jump from one part of the body to another. For example, it could start in a leg muscle, then in a few seconds jump to the forehead, then the abdomen, etc. Because fasciculations can occur on the head, this strongly suggests the brain as the generator due to its exclusive non-dependence on the spinal cord. (Together, the brain and spinal cord comprise the central nervous system.)
Anxiety is often caused as a result of BFS, and a lot of sufferers have hypochondria as BFS mimics symptoms of much more serious diseases such as amyotrophic lateral sclerosis (ALS).
Benign fasciculation syndrome (BFS) is a neurological disorder characterized by fasciculation (twitching) of various voluntary muscles in the body. The twitching can occur in any voluntary muscle group but is most common in the eyelids, arms, legs, and feet. Even the tongue may be affected. The twitching may be occasional or may go on nearly continuously. Usually intentional movement of the involved muscle causes the fasciculations to cease immediately, but they may return once the muscle is at rest again.
Symptoms are very similar to those found in benign fasciculation syndrome and include:
- Fasciculations (Primary Symptom)
- Muscle cramping (Primary Symptom)
- Muscle pain
- Muscle Stiffness
- Generalized fatigue
- Anxiety
- Exercise intolerance
- Globus sensations
- Paraesthesias.
- Hyperreflexia
NMT is a diverse disorder. As a result of muscular hyperactivity, patients may present with muscle cramps, stiffness, myotonia-like symptoms (slow relaxation), associated walking difficulties, hyperhidrosis (excessive sweating), myokymia (quivering of a muscle), fasciculations (muscle twitching), fatigue, exercise intolerance, myoclonic jerks and other related symptoms. The symptoms (especially the stiffness and fasciculations) are most prominent in the calves, legs, trunk, and sometimes the face and neck, but can also affect other body parts. NMT symptoms may fluctuate in severity and frequency. Symptoms range from mere inconvenience to debilitating. At least a third of people also experience sensory symptoms.
Cramp fasciculation syndrome (CFS) is a rare peripheral nerve hyperexcitability disorder. It is more severe than the related (and common) disorder known as benign fasciculation syndrome; it causes fasciculations, cramps, pain, fatigue, and muscle stiffness similar to those seen in neuromyotonia (another related condition). Patients with CFS, like those with neuromyotonia, may also experience paresthesias.
Most cases of cramp fasciculation syndrome are idiopathic.
Cramp fasciculation syndrome is diagnosed by clinical examination and electromyography (EMG). Fasciculation is the only abnormality (if any) seen with EMG.
Cramp fasciculation syndrome is a chronic condition. Treatment options include anti-seizure medications such as carbamazepine, immunosuppressive drugs and plasmapheresis.
There are three main types of NMT:
- Chronic
- Monophasic (symptoms that resolve within several years of onset; postinfection, postallergic)
- Relapsing Remitting
Prognosis for PBP patients is poor. Progressive bulbar palsy symptoms can include progressive difficulty with chewing, talking, and swallowing. Patients can also exhibit reduced gag reflexes, weak palatal movements, fasciculations, and weak movement of the facial muscles and tongue. In advanced cases of PBP, the patient may be unable to protrude their tongue or manipulate food in their mouth.
Patients with early cases of PBP have difficulty with pronunciations, particularly lateral consonants (linguals) and velars, and may show problems with drooling saliva. If the corticobulbar tract is affected a pseudobulbar affect with emotional changes may occur. Because PBP patients have such difficulty swallowing, food and saliva can be inhaled into the lungs. This can cause gagging and choking, and it increases the risk of pneumonia. Death, which is often from pneumonia, usually occurs 1 to 3 years after the start of the disorder.
Myoclonic seizure can be described as "jumps" or "jolts" experienced in a single or even the entire body. The feeling experienced by the individual is described as uncontrollable jolts common to receiving a mild electric shock. The sudden jerks and twitching of the body can often be so severe that it can cause a small child to fall.
A myoclonic seizure ("myo" "muscle", "clonic" "jerk") is a sudden involuntary contraction of muscle groups. The muscle jerks consist of symmetric, mostly generalized jerks, localized in the arms and in the shoulders and also simultaneously with a head nod; both the arms may fling out together and simultaneously a head nod may occur. Symptoms have some variability amongst subjects. Sometimes the entire body may jerk, just like a startle response. As is the case with all generalised seizures, the patient is not conscious during the event but the seizure is so brief that the person appears to remain fully conscious.
In reflex epilepsies, myoclonic seizures can be brought on by flashing lights or other environmental triggers (see photosensitive epilepsy).
Familiar examples of normal myoclonus include hiccups and hypnic jerks that some people experience while drifting off to sleep. Severe cases of pathologic myoclonus can distort movement and severely limit a person's ability to sleep, eat, talk, and walk. Myoclonic jerks commonly occur in individuals with epilepsy.
Myoclonus is a brief, involuntary of a muscle or a group of muscles. It describes a medical sign and, generally, is not a diagnosis of a disease. These myoclonic twitches, jerks, or seizures are usually caused by sudden muscle contractions ("positive myoclonus") or brief lapses of contraction ("negative myoclonus"). The most common circumstance under which they occur is while falling asleep (hypnic jerk). Myoclonic jerks occur in healthy persons and are experienced occasionally by everyone. However, when they appear with more persistence and become more widespread they can be a sign of various neurological disorders. Hiccups are a kind of myoclonic jerk specifically affecting the diaphragm. When a spasm is caused by another person it is known as a "provoked spasm". Shuddering attacks in babies fall in this category.
Myoclonic jerks may occur alone or in sequence, in a pattern or without pattern. They may occur infrequently or many times each minute. Most often, myoclonus is one of several signs in a wide variety of nervous system disorders such as multiple sclerosis, Parkinson's disease, Dystonia, Alzheimer's disease, Gaucher's disease, subacute sclerosing panencephalitis, Creutzfeldt–Jakob disease (CJD), serotonin toxicity, some cases of Huntington's disease, some forms of epilepsy, and occasionally in intracranial hypotension.
In almost all instances in which myoclonus is caused by central nervous system disease it is preceded by other symptoms; for instance, in CJD it is generally a late-stage clinical feature that appears after the patient has already started to exhibit gross neurological deficits.
Anatomically, myoclonus may originate from lesions of the cortex, subcortex or spinal cord. The presence of myoclonus above the foramen magnum effectively excludes spinal myoclonus; further localisation relies on further investigation with electromyography (EMG) and electroencephalography (EEG).
Progressive bulbar palsy (PBP) is a medical condition. It belongs to a group of disorders known as motor neuron diseases. PBP is a disease that attacks the nerves supplying the bulbar muscles. These disorders are characterized by the degeneration of motor neurons in the cerebral cortex, spinal cord, brain stem, and pyramidal tracts. This specifically involves the glossopharyngeal nerve (IX), vagus nerve (X), and hypoglossal nerve (XII).
This disorder should not be confused with pseudobulbar palsy or progressive spinal muscular atrophy. The term Infantile progressive bulbar palsy is used to describe progressive bulbar palsy in children. Some neurologists consider this disorder to be a subset of amyotrophic lateral sclerosis (ALS), but others disagree with that classification.
Patients with spinal accessory nerve palsy often exhibit signs of lower motor neuron disease such as diminished muscle mass, fasciculations, and partial paralysis of the sternocleidomastoid and trapezius muscles. Interruption of the nerve supply to the sternocleidomastoid muscle results in an asymmetric neckline, while weakness of the trapezius muscle can produce a drooping shoulder, winged scapula, and a weakness of forward elevation of the shoulder.
Medical procedures are the most common cause of injury to the spinal accessory nerve. In particular, radical neck dissection and cervical lymph node biopsy are among the most common surgical procedures that result in spinal accessory nerve damage. London notes that a failure to rapidly identify spinal accessory nerve damage may exacerbate the problem, as early intervention leads to improved outcomes.
The start of ALS may be so subtle that the symptoms are overlooked. The earliest symptoms of ALS are muscle weakness or muscle atrophy. Other presenting symptoms include trouble swallowing or breathing, cramping, or stiffness of affected muscles; muscle weakness affecting an arm or a leg; or slurred and nasal speech. The parts of the body affected by early symptoms of ALS depend on which motor neurons in the body are damaged first.
In limb-onset ALS, people first experience awkwardness when walking or running or even tripping over or stumbling may be experienced and often this is marked by walking with a "dropped foot" which drags gently on the ground. Or if arm-onset, difficulty with tasks requiring manual dexterity such as buttoning a shirt, writing, or turning a key in a lock may be experienced.
In bulbar-onset ALS, initial symptoms will mainly be of difficulty speaking clearly or swallowing. Speech may become slurred, nasal in character, or quieter. There may be difficulty in swallowing and loss of tongue mobility. A smaller proportion of people experience "respiratory-onset" ALS, where the intercostal muscles that support breathing are affected first.
Over time, people experience increasing difficulty moving, swallowing (dysphagia), and speaking or forming words (dysarthria). Symptoms of upper motor neuron involvement include tight and stiff muscles (spasticity) and exaggerated reflexes (hyperreflexia) including an overactive gag reflex. An abnormal reflex commonly called Babinski's sign also indicates upper motor neuron damage. Symptoms of lower motor neuron degeneration include muscle weakness and atrophy, muscle cramps, and fleeting twitches of muscles that can be seen under the skin (fasciculations) although twitching is not a diagnostic symptom and more of a side effect so twitching would either occur after or accompany weakness and atrophy.
The disorder causes muscle weakness and atrophy throughout the body due to the degeneration of the upper and lower motor neurons. Individuals affected by the disorder may ultimately lose the ability to initiate and control all voluntary movement, although bladder and bowel function and the muscles responsible for eye movement are usually spared until the final stages of the disorder.
Cognitive or behavioral dysfunction is present in 30–50% of individuals with ALS. Around half of people with ALS will experience mild changes in cognition and behavior, and 10–15% will show signs of frontotemporal dementia. Repeating phrases or gestures, apathy, and loss of inhibition are frequently reported behavioral features of ALS. Language dysfunction, executive dysfunction, and troubles with social cognition and verbal memory are the most commonly reported cognitive symptoms in ALS; a meta-analysis found no relationship between dysfunction and disease severity. However, cognitive and behavioral dysfunctions have been found to correlate with reduced survival in people with ALS and increased caregiver burden; this may be due in part to deficits in social cognition. About half the people who have ALS experience emotional lability, in which they cry or laugh for no reason.
Sensory nerves and the autonomic nervous system are generally unaffected, meaning the majority of people with ALS maintain hearing, sight, touch, smell, and taste.
BVVL is marked by a number of cranial nerve palsies, including those of the motor components involving the 7th and 9th-12th cranial nerves, spinal motor nerves, and upper motor neurons. Major features of BVVL include facial and neck weakness, fasciculation of the tongue, and neurological disorders from the cranial nerves. The neurological manifestations develop insidiously: they usually begin with sensorineural deafness, progress inexorably to paralysis, and often culminate in respiratory failure. Most mortality in patients has been from either respiratory infections or respiratory muscle paralysis. Pathological descriptions of BVVL include injury and depletion of 3rd-7th cranial nerves, loss of the spinal anterior horn cells, degeneration of Purkinje cells, as well as degeneration of the spinocerebellar and pyramidal tracts. The first symptoms in nearly all cases of BVVL is progressive vision loss and deafness, and the first initial symptoms are seen anywhere from one to three years.
Most cases of deafness are followed by a latent period that can extend anywhere from weeks to years, and this time is usually marked by cranial nerve degeneration. Neurological symptoms of BVVL include optic atrophy, cerebellar ataxia, retinitis pigmentosa, epilepsy and autonomic dysfunction. Non-neurological symptoms can include diabetes, auditory hallucinations, respiratory difficulties, color blindness, and hypertension.
Diabetic neuropathy affects all peripheral nerves including sensory neurons, motor neurons, but rarely affects the autonomic nervous system. Therefore, diabetic neuropathy can affect all organs and systems, as all are innervated. There are several distinct syndromes based on the organ systems and members affected, but these are by no means exclusive. A patient can have sensorimotor and autonomic neuropathy or any other combination. Signs and symptoms vary depending on the nerve(s) affected and may include symptoms other than those listed. Symptoms usually develop gradually over years.
Symptoms may include the following:
- Trouble with balance
- Numbness and tingling of extremities
- Dysesthesia (abnormal sensation to a body part)
- Diarrhea
- Erectile dysfunction
- Urinary incontinence (loss of bladder control)
- Facial, mouth and eyelid drooping
- Vision changes
- Dizziness
- Muscle weakness
- Difficulty swallowing
- Speech impairment
- Fasciculation (muscle contractions)
- Anorgasmia
- Retrograde ejaculation (in males)
- Burning or electric pain
Brown-Vialetto-Van-Laere syndrome (BVVL), sometimes known as Brown's Syndrome, is a rare degenerative disorder often initially characterized by progressive sensorineural deafness.
The syndrome most often affects children, adolescents, and young adults. As knowledge of BVVL grows some adult patients have now been diagnosed. There is no known cure, however with prompt treatment the prognosis may be positive with some patients stabilizing and even minor improvements noted in certain cases.
Diabetic neuropathy encompasses a series of different neuropathic syndromes which can be schematized in the following way:
- Focal and multifocal neuropathies:
- Mononeuropathy
- Amyotrophy, radiculopathy
- Multiple lesions "mononeuritis multiplex"
- Entrapment (e.g. median, ulnar, peroneal)
- Symmetrical neuropathies:
- Acute sensory
- Autonomic
- Distal symmetrical polyneuropathy (DSPN), the diabetic type of which is also known as diabetic peripheral neuropathy (DPN) (most common presentation)
Horses with Type 1 PSSM usually appear normal at rest, but show signs of exertional rhabdomyolysis ("tying up") such as shortened stride, stiffness, firm musculature, sweating, pain or reluctance to exercise, when asked to perform light work. While episodes of exertional rhabdomyolysis is one of the most frequent signs associated with affected horses (reported in ~37% of affected animals), other common signs include gait abnormalities, shifting lameness, muscle weakness that may result in an inability to rise, colic-like pain, and muscle fasciculation, atrophy, and/or stiffness (most commonly seen in the semimembranosis, semitendinosis, and longissimus muscles).
These clinical signs usually first become apparent when the horse is placed into training as a young animal; however, affected horses will show histological changes consistent with muscle damage at one month of age, and may also show elevations in creatine kinase (CK), an enzyme that elevates with muscle damage. Concurrent illness, such as respiratory or gastrointestinal infection, can lead to elevations in CK and potentially life-threatening rhabdomyolysis, even without exercise. Horses with PSSM often have a persistently elevated CK at rest, which differentiates the disease from recurrent exertional rhabdomyolysis, in which horses have normal CK concentrations between episodes.
Horses with PSSM show fewer clinical signs if their exercise is slowly increased over time (i.e. they are slowly conditioned). Additionally, they are much more likely to develop muscle stiffness and rhabdomyolysis if they are exercised after prolonged stall rest.
Horses generally have fewer clinical signs when asked to perform short bouts of work at maximal activity level (aerobic exercise), although they have difficulty achieving maximal speed and tire faster than unaffected horses. They have more muscle damage when asked to perform lower intensity activity over a longer period of time (aerobic activity), due to an energy deficit in the muscle.
The symptoms of organophosphate poisoning include muscle weakness, fatigue, muscle cramps, fasciculation, and paralysis. Other symptoms include hypertension, and hypoglycemia.
Overstimulation of nicotinic acetylcholine receptors in the central nervous system, due to accumulation of ACh, results in anxiety, headache, convulsions, ataxia, depression of respiration and circulation, tremor, general weakness, and potentially coma. When there is expression of muscarinic overstimulation due to excess acetylcholine at muscarinic acetylcholine receptors symptoms of visual disturbances, tightness in chest, wheezing due to bronchoconstriction, increased bronchial secretions, increased salivation, lacrimation, sweating, peristalsis, and urination can occur.
The effects of organophosphate poisoning on muscarinic receptors are recalled using the mnemonic SLUDGEM (salivation, lacrimation, urination, defecation, gastrointestinal motility, emesis, miosis) An additional mnemonic is MUDDLES: miosis, urination, diarrhea, diaphoresis, lacrimation, excitation, and salivation.
The onset and severity of symptoms, whether acute or chronic, depends upon the specific chemical, the route of exposure (skin, lungs, or GI tract), the dose, and the individuals ability to degrade the compound, which the PON1 enzyme level will affect.
Neurotoxic effects have also been linked to poisoning with OP pesticides causing four neurotoxic effects in humans: cholinergic syndrome, intermediate syndrome, organophosphate-induced delayed polyneuropathy (OPIDP), and chronic organophosphate-induced neuropsychiatric disorder (COPIND). These syndromes result after acute and chronic exposure to OP pesticides.
Cholinergic syndrome occurs in acute poisonings with OP pesticides and is directly related to levels of AChE activity. Symptoms include miosis, sweating, lacrimation, gastrointestinal symptoms, respiratory difficulties, shortness of breath, slowed heart rate, cyanosis, vomiting, diarrhea, trouble sleeping, as well as other symptoms. Along with these central effects can be seen and finally seizures, convulsions, coma, respiratory failure. If the person survives the first day of poisoning personality changes can occur, aggressive events, psychotic episodes, disturbances and deficits in memory and attention, as well as other delayed effects. When death occurs, it is most commonly due to respiratory failure from the combination of central and peripheral effects, paralysis of respiratory muscles and depression of the brain respiratory center. For people afflicted with cholinergic syndrome, atropine sulfate combined with an oxime is used to combat the effects of the acute OP poisoning. Diazepam is sometimes also administered in combination with the atropine and oximes.
The intermediate syndrome (IMS) appears in the interval between the end of the cholinergic crisis and the onset of OPIDP. Symptoms associated with IMS manifest within 24–96 hours after exposure. The exact etiology, incidence, and risk factors associated with IMS are not clearly understood, but IMS is recognized as a disorder of neuromuscular junctions. IMS occurs when a person has a prolonged and severe inhibition of AChE and has been linked to specific OP pesticides such as methylparathion, dichlorvos, and parathion. Patients present with increasing weakness of facial, neck flexor and respiratory muscles.
OPIDP occurs in a small percentage of cases, roughly two weeks after exposure, where temporary paralysis occurs. This loss of function and ataxia of peripheral nerves and spinal cord is the phenomenon of OPIDP. Once the symptoms begin with shooting pains in both legs, the symptoms continue to worsen for 3–6 months. In the most severe cases quadriplegia has been observed. Treatment only affects sensory nerves, not motor neurons which may permanently lose function. The aging and phosphorylation of more than 70% of functional NTE in peripheral nerves is one of the processes involved in OPIDP. Standard treatments for OP poisoning are ineffective for OPIDP.
COPIND occurs without cholinergic symptoms and is not dependent on AChE inhibition. COPIND appears with a delay and is long lasting. Symptoms associated with COPIND include cognitive deficit, mood change, autonomic dysfunction, peripheral neuropathy, and extrapyramidal symptoms. The underlying mechanisms of COPIND have not been determined, but it is hypothesized that withdrawal of OP pesticides after chronic exposure or acute exposure could be a factor.