Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Schizencephaly can be distinguished from porencephaly by the fact that in schizencephaly the fluid-filled component, if present, is entirely lined by heterotopic grey matter while a porencephalic cyst is lined mostly by white matter. Individuals with clefts in both hemispheres, or bilateral clefts, are often developmentally delayed and have delayed speech and language skills and corticospinal dysfunction. Individuals with smaller, unilateral clefts (clefts in one hemisphere) may be weak or paralyzed on one side of the body and may have average or near-average intelligence. Patients with schizencephaly may also have varying degrees of microcephaly, Intellectual disability, hemiparesis (weakness or paralysis affecting one side of the body), or quadriparesis (weakness or paralysis affecting all four extremities), and may have reduced muscle tone (hypotonia). Most patients have seizures, and some may have hydrocephalus.
Schizencephaly () is a rare birth defect characterized by abnormal clefts lined with grey matter that form the ependyma of the cerebral ventricles to the pia mater. These clefts can occur bilaterally or unilaterally. Common clinical features of this malformation include epilepsy, motor deficits, and psychomotor retardation.
More than 25 syndromes resulting from abnormal neuronal migration have been described. Among them are syndromes with several different patterns of inheritance; genetic counseling thus differs greatly between syndromes.
- Lissencephaly
- Microlissencephaly
- Schizencephaly
- Porencephaly
- Pachygyria
- Polymicrogyria
- Agyria
- Macrogyria
- Microgyria
- Micropolygyria
- Neuronal heterotopias
- Agenesis of the corpus callosum
- Agenesis of the cranial nerves
- Band heterotopias
Focal cortical dysplasia. Miller-Dieker syndrome, , Fukuyama congenital muscular dystrophy and Walker Warburg syndrome are genetic disorders associated with lissencephaly.
Symptoms vary according to the abnormality, but often feature poor muscle tone and motor function, seizures, developmental delays, mental retardation, failure to grow and thrive, difficulties with feeding, swelling in the extremities, and a smaller than normal head. Most infants with an NMD appear normal, but some disorders have characteristic facial or skull features that can be recognized by a neurologist.
There are various symptoms of colpocephaly and patients can experience effects ranging from mild to severe. Some patients do not show most of the symptoms related to colpocephaly, such as psychomotor abnormalilities and agenesis of the corpus callosum. In some cases, signs appear later on in life and a significant number of children suffer only from minor disabilities.
The following list includes common symptoms of colpocephaly.
- partial or complete agenesis of the corpus callosum
- intellectual disability
- motor abnormalities
- visual defects such as, crossing of the eyes, missing visual fields, and optic nerve hypoplasia
- spasticity
- seizures
- cerebral palsy
Intracranial abnormalities include:
- Microcephaly
- Agenesis of the corpus callosum
- Meningomyelocele
- Lissencephaly
- Periventricular leukomalacia (PVL)
- Enlargement of the cisterna magna
- Cerebellar hypoplasia
The optic nerve hypoplasia is generally manifested by nystagmus (involuntary eye movements, often side-to-side) and a smaller-than-usual optic disc. The degree of visual impairment is variable, and ranges from normal vision to complete blindness. When nystagmus develops, it typically appears by 1–8 months of age, and usually indicates that there will be a significant degree of visual impairment, but the severity is difficult to predict in infancy. Although there are many measures to compensate for visual impairment, there are few treatments available to induce normal optic nerve function.
Septo-optic dysplasia is a highly variable disorder. It is rare for siblings to present with identical features of the septo-optic dysplasia spectrum. Many patients present with additional developmental defects outside the septo-optic dysplasia triad. In particular digital defects are common.
Colpocephaly is characterized by disproportionately large occipital horns of the lateral ventricles (also frontal and temporal ventricles in some cases). MRI and CT scans of patients demonstrate abnormally thick gray matter with thin poorly myelinated white matter. This happens as a result of partial or complete absence of the corpus callosum. Corpus callosum is the band of white matter connecting the two cerebral hemispheres. The corpus callosum plays an extremely important role in interhemispheric communication, thus lack of or absence of these neural fibers results in a number of disabilities.
The lemon sign on CT scans of patients refers to the shape of the fetal skull when the frontal bones lose their normal convex contour and appear flattened or inwardly scalloped. This gives the skull a shape similar to that of a lemon. The sign is seen on transverse sonograms of the fetal cranium obtained at the level of the ventricles.
A special case is found in literature where lissencephaly, colpocephaly, and septal agenesis are all present together. The CT scans of the patient shows the ventricular system having a unique appearance of a crown of a king. This is referred to as the 'CROWN SIGN'.
Usually the cerebellum and brain stem are formed normally, although in some cases the cerebellum may also be absent. An infant with hydranencephaly may appear normal at birth or may have some distortion of the skull and upper facial features due to fluid pressure inside the skull. The infant's head size and spontaneous reflexes such as sucking, swallowing, crying, and moving the arms and legs may all seem normal, depending on the severity of the condition. However, after a few weeks the infant sometimes becomes irritable and has increased muscle tone (hypertonia). After several months of life, seizures and hydrocephalus may develop, if they did not exist at birth. Other symptoms may include visual impairment, lack of growth, deafness, blindness, spastic quadriparesis (paralysis), and intellectual deficits.
Some infants may have additional abnormalities at birth including seizures, myoclonus (involuntary sudden, rapid jerks), limited thermoregulation abilities, and respiratory problems.
Still other infants display no obvious symptoms at birth, going many months without a confirmed diagnosis of hydranencephaly. In some cases a severe hydrocephalus, or other cephalic condition, is misdiagnosed.
Where known, the ICD-10 code is listed below.
- Anencephaly (Q00.0)
- Colpocephaly (ICD10 unknown)
- Holoprosencephaly (Q04.2)
- Ethmocephaly (ICD10 unknown)
- Hydranencephaly (Q04.3)
- Iniencephaly (Q00.2)
- Lissencephaly (Q04.3)
- Megalencephaly (Q04.5)
- Microcephaly (Q02)
- Porencephaly (Q04.6)
- Schizencephaly (Q04.6)
Cephalic disorders (from the Greek word "κεφάλι", meaning "head") are congenital conditions that stem from damage to, or abnormal development of, the budding nervous system. Cephalic means "head" or "head end of the body."
Cephalic disorders are not necessarily caused by a single factor, but may be influenced by hereditary or genetic conditions, nutritional deficiencies, or by environmental exposures during pregnancy, such as medication taken by the mother, maternal infection, or exposure to radiation. Some cephalic disorders occur when the cranial sutures (the fibrous joints that connect the bones of the skull) join prematurely. Most cephalic disorders are caused by a disturbance that occurs very early in the development of the fetal nervous system.
The human nervous system develops from a small, specialized plate of cells on the surface of the embryo. Early in development, this plate of cells forms the neural tube, a narrow sheath that closes between the third and fourth weeks of pregnancy to form the brain and spinal cord of the embryo. Four main processes are responsible for the development of the nervous system: cell proliferation, the process in which nerve cells divide to form new generations of cells; cell migration, the process in which nerve cells move from their place of origin to the place where they will remain for life; cell differentiation, the process during which cells acquire individual characteristics; and cell death, a natural process in which cells die.
Damage to the developing nervous system is a major cause of chronic, disabling disorders and, sometimes, death in infants, children, and even adults. The degree to which damage to the developing nervous system harms the mind and body varies enormously. Many disabilities are mild enough to allow those afflicted to eventually function independently in society. Others are not. Some infants, children, and adults die, others remain totally disabled, and an even larger population is partially disabled, functioning well below normal capacity throughout life.
The National Institute of Neurological Disorders and Stroke (NINDS) is currently "conducting and supporting research on normal and abnormal brain and nervous system development."
Hydranencephaly or hydrancephaly is a condition in which the brain's cerebral hemispheres are absent to varying degrees and the remaining cranial cavity is filled with cerebrospinal fluid.
Hydranencephaly (or hydrancephaly) is a type of cephalic disorder.
These disorders are congenital conditions that derive from either damage to, or abnormal development of, the fetal nervous system in the earliest stages of development in utero. Cephalic is the medical term for “head” or “head end of body.” These conditions do not have any definitive identifiable cause factor; instead generally attributed to a variety of hereditary or genetic conditions, but also by environmental factors such as maternal infection, pharmaceutical intake, or even exposure to high levels of radiation.
This should not be confused with hydrocephalus, which is an accumulation of excess cerebrospinal fluid in the ventricles of the brain.
In hemihydranencephaly, only half of the cranial cavity is filled with fluid.
May–White syndrome is a rare familial progressive myoclonus epilepsy with lipomas, deafness, and ataxia. This syndrome is probably a familial form of mitochondrial encephalomyopathy.
Benign familial infantile epilepsy (BFIE), also known as benign familial infantile seizures (BFIS) or benign familial infantile convulsions (BFIC) is an epilepsy syndrome. Affected children, who have no other health or developmental problems, develop seizures during infancy. These seizures have focal origin within the brain but may then spread to become generalised seizures. The seizures may occur several times a day, often grouped in clusters over one to three days followed by a gap of one to three months. Treatment with anticonvulsant drugs is not necessary but they are often prescribed and are effective at controlling the seizures. This form of epilepsy resolves after one or two years, and appears to be completely benign. The EEG of these children, between seizures, is normal. The brain appears normal on MRI scan.
A family history of epilepsy in infancy distinguishes this syndrome from the non-familial classification (see benign infantile epilepsy), though the latter may be simply sporadic cases of the same genetic mutations. The condition is inherited with an autosomal dominant transmission. There are several genes responsible for this syndrome, on chromosomes 2, 16 and 19. It is generally described as idiopathic, meaning that no other neurological condition is associated with it or causes it. However, there are some forms that are linked to neurological conditions. One variant known as infantile convulsions and choreoathetosis (ICCA) forms an association between BFIE and paroxysmal kinesigenic choreoathetosis and has been linked to the PRRT2 gene on chromosome 16. An association with some forms of familial hemiplegic migraine (FHM) has also been found. Benign familial infantile epilepsy is not genetically related to benign familial neonatal epilepsy (BFNE), which occurs in neonates. However, a variation with seizure onset between two days and seven months called "benign familial neonatal–infantile seizures" (BFNIS) has been described, which is due to a mutation in the SCN2A gene.
SCA6 is typified by progressive and permanent cerebellar dysfunction. These cerebellar signs include ataxia and dysarthria, likely caused by cerebellar atrophy. Prior to diagnosis and the onset of major symptoms, patients often report a feeling of "wooziness" and momentary imbalance when turning corners or making rapid movements. The age at which symptoms first occur varies widely, from age 19 to 71, but is typically between 43 and 52. Other major signs of SCA6 are the loss of vibratory and proprioceptive sensation and nystagmus.
While most patients present with these severe progressive symptoms, others, sometimes within the same family, display episodic non-progressive symptoms more similar to episodic ataxia. Still others present with symptoms common to both SCA6 and familial hemiplegic migraine.
The classification of this syndrome is difficult. Three conditions are known to be caused by mutations in the" CYLD" gene: Brooke-Spiegler syndrome, multiple familial trichoepithelioma, and familial cylindromatosis. Clinically, these are distinct, but appear to arise from mutations in the same gene.
Types include:
Brooke-Spiegler syndrome is a condition where multiple skin tumors develop from skin structures. Tumors commonly occurring in this syndrome include spiradenomas, trichoepitheliomas, and cylindromas. The tumors are generally benign, but may become malignant. Affected individuals are also at increased risk of developing tumors in tissues other than skin – particularly benign or malignant tumors of the salivary glands.
Tumours in Brooke-Spiegler typically appear in early adulthood and are most often found on the head and neck. In severe cases, the tumors may affect vision or hearing. They can be disfiguring and may contribute to depression or other psychological problems. For unclear reasons, females are often more severely affected than males.
Brooke-Spiegler is rare and its exact incidence is unknown.
It is inherited in an autosomal dominant fashion.
FHM signs overlap significantly with those of migraine with aura. In short, FHM is typified by migraine with aura associated with hemiparesis and, in FHM1, cerebellar degeneration. This cerebellar degeneration can result in episodic or progressive ataxia. FHM can also present with the same signs as benign familial infantile convulsions (BFIC) and alternating hemiplegia of childhood. Other symptoms are altered consciousness (in fact, some cases seem related to head trauma), gaze-evoked nystagmus and coma. Aura symptoms, such as numbness and blurring of vision, typically persist for 30–60 minutes, but can last for weeks and months. An attack resembles a stroke, but unlike a stroke, it resolves in time. These signs typically first manifest themselves in the first or second decade of life.
Spinocerebellar ataxia type 6 (SCA6) is a rare, late-onset, autosomal dominant disorder, which, like other types of SCA, is characterized by dysarthria, oculomotor disorders, peripheral neuropathy, and ataxia of the gait, stance, and limbs due to cerebellar dysfunction. Unlike other types, SCA 6 is not fatal. This cerebellar function is permanent and progressive, differentiating it from episodic ataxia type 2 (EA2) where said dysfunction is episodic. In some SCA6 families, some members show these classic signs of SCA6 while others show signs more similar to EA2, suggesting that there is some phenotypic overlap between the two disorders. SCA6 is caused by mutations in CACNA1A, a gene encoding a calcium channel α subunit. These mutations tend to be trinucleotide repeats of CAG, leading to the production of mutant proteins containing stretches of 20 or more consecutive glutamine residues; these proteins have an increased tendency to form intracellular agglomerations. Unlike many other polyglutamine expansion disorders expansion length is not a determining factor for the age that symptoms present.
Ackerman syndrome is a familial syndrome of fused molar roots with a single canal (taurodontism), hypotrichosis, full upper lip without a cupid’s bow, thickened and wide philtrum, and occasional juvenile glaucoma.
It was described by James L. Ackerman, A. Leon Ackerman, and A. Bernard Ackerman.
It can also refer to interstitial granulomatous dermatitis.
More than 70% of children with ONH experience developmental delay, ranging from isolated focal defects to delay in all areas of development (global delay). Motor delay is most common (75%) and communication delay is least common (44%). Predictors of significantly delayed development include hypoplasia or agenesis of the corpus callosum and hypothyroidism. The absence of the septum pellucidum does not predict developmental delay. Delays may occur in unilateral (39%) as well as bilateral (78%) cases.
Benign neonatal seizures include two disorders benign idiopathic neonatal seizures and benign familial neonatal seizures. They are not classified as epilepsy. Anticonvulsants are not needed. And those affected do not develop epilepsy when they grow up.
ONH can be unilateral (in one eye) or bilateral (in both eyes), although it presents most often bilaterally (80%). Because the unilateral cases tend to have better vision, they are typically diagnosed at a later age than those with bilateral ONH. Visual acuity can range from no light perception to near-normal vision.
Children diagnosed with ONH generally present with vision problems which include nystagmus (involuntary movement of the eyes), which tends to develop at 1 to 3 months and/or strabismus (inability to align both eyes simultaneously), manifested during the first year of life.
The majority of children affected experience improvement in vision during the first few years of life, though the reason for this occurrence is unknown. There have been no reported cases of decline in vision due to ONH.
The most distinctive clinical feature is the absence of overflow tears with emotional crying after age 7 months. This symptom can manifest less dramatically as persistent bilateral eye irritation. There is also a high prevalence of breech presentation. Other symptoms include weak or absent suck and poor tone, poor suck and misdirected swallowing, and red blotching of skin.
Symptoms in an older child with familial dysautonomia might include:
1. Delayed speech and walking
2. Unsteady gait
3. Spinal curvature
4. Corneal abrasion
5. Less perception in pain or temperature with nervous system.
6. Poor growth
7. Erratic or unstable blood pressure.
8. Red puffy hands
9. Dysautonomia crisis: a constellation of symptoms in response to physical and emotional stress; usually accompanied by vomiting, increased heart rate, increase in blood pressure, sweating, drooling, blotching of the skin and a negative change in personality.
Daentl Townsend Siegel syndrome is a very rare disorder characterized by blue sclerae, kidney malfunction, thin skin, and hydrocephalus. It was first identified by D.L. Daentl et al. in 1978. Daentl Townsend Siegel syndrome is also known as "Hydrocephalus blue sclera nephropathy" and "Familial nephrosis, hydrocephalus, thin skin, blue sclerae syndrome".