Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of the signs/symptoms of medullary cystic kidney disease, the disease is not easy to diagnose and is uncommon. In this condition, loss of kidney function occurs slowly over time, however the following signs/symptoms could be observed in an affected individual:
Some individuals with this disease develop gout, which is a condition in which patients develop severe pain and swelling in the big toe or another joint such as the knee. If untreated, it becomes chronic and affects the joints most of the time, instead of intermittently.
Acute uric acid nephropathy is caused by deposition of uric acid crystals within the kidney interstitium and tubules, leading to partial or complete obstruction of collecting ducts, renal pelvis, or ureter. This obstruction is usually bilateral, and patients follow the clinical course of acute renal failure.
Medullary cystic kidney disease (MCKD) is an autosomal dominant kidney disorder characterized by tubulointerstitial sclerosis leading to end-stage renal disease. Because the presence of cysts is neither an early nor a typical diagnostic feature of the disease, and because at least 4 different gene mutations may give rise to the condition, the name autosomal dominant tubulointerstitial kidney disease (ADTKD) has been proposed, to be appended with the underlying genetic variant for a particular individual. Importantly, if cysts are found in the medullary collecting ducts they can result in a shrunken kidney, unlike that of polycystic kidney disease. There are two known forms of medullary cystic kidney disease, mucin-1 kidney disease 1 (MKD1) and mucin-2 kidney disease/uromodulin kidney disease (MKD2). A third form of the disease occurs due to mutations in the gene encoding renin (ADTKD-REN), and has formerly been known as familial juvenile hyperuricemic nephropathy type 2.
The picture of acute renal failure is observed: decreased urine production and rapidly rising serum creatinine levels. Acute uric acid nephropathy is differentiated from other forms of acute renal failure by the finding of a urine uric acid/creatinine ratio > 1 in a random urine sample.
An overview of types 1, 2, and 4 is presented below (type 3 is usually excluded from modern classifications):
The onset of symptoms is 5 to 10 years after the disease begins. A usual first symptom is frequent urination at night: nocturia. Other symptoms include tiredness, headaches, a general feeling of illness, nausea, vomiting, frequent daytime urination, lack of appetite, itchy skin, and leg swelling.
Distal RTA (dRTA) is the classical form of RTA, being the first described. Distal RTA is characterized by a failure of H+ secretion into lumen of nephron by the alpha intercalated cells of the medullary collecting duct of the distal nephron.
This failure of acid secretion may be due to a number of causes, and it leads to an inability to acidify the urine to a pH of less than 5.3. Because renal excretion is the primary means of eliminating from the body, there is consequently a tendency towards acidemia. There is an inability to excrete H while cannot be reclaimed by the cell, leading to acidemia (as builds up in the body) and hypokalemia (as cannot be reabsorbed by the alpha cell).
This leads to the clinical features of dRTA; In other words, the intercalated cells' apical H+/K+ antiporter is non-functional, resulting in proton retention and potassium excretion. Since calcium phosphate stones demonstrate a proclivity for deposition at higher pHs (alkaline), the substance of the kidney develops stones bilaterally; this does not occur in the other RTA types.
- Normal anion gap metabolic acidosis/acidemia
- Hypokalemia, Hypocalcemia, Hyperchloremia
- Urinary stone formation (related to alkaline urine, hypercalciuria, and low urinary citrate).
- Nephrocalcinosis (deposition of calcium in the substance of the kidney)
- Bone demineralisation (causing rickets in children and osteomalacia in adults)
- Sjogren's syndrome
Nephrosis is any of various forms of kidney disease (nephropathy). In an old and broad sense of the term, it is any nephropathy, but in current usage the term is usually restricted to a narrower sense of nephropathy without inflammation or neoplasia, in which sense it is distinguished from nephritis, which involves inflammation. It is also defined as any purely degenerative disease of the renal tubules. Nephrosis is characterized by a set of signs called the nephrotic syndrome. Nephrosis can be a primary disorder or can be secondary to another disorder. Nephrotic complications of another disorder can coexist with nephritic complications. In other words, nephrosis and nephritis can be pathophysiologically contradistinguished, but that does not mean that they cannot occur simultaneously.
Types of nephrosis include amyloid nephrosis and osmotic nephrosis.
Kidney disease is a non-communicable disease, having serious consequences if it cannot be controlled effectively. Generally, the process of kidney disease development is from light to serious. Some kidney diseases can cause renal failure.
Causes of kidney disease include deposition of the IgA antibodies in the glomerulus, administration of analgesics, xanthine oxidase deficiency, toxicity of chemotherapy agents, and long-term exposure to lead or its salts. Chronic conditions that can produce nephropathy include systemic lupus erythematosus, diabetes mellitus and high blood pressure (hypertension), which lead to diabetic nephropathy and hypertensive nephropathy, respectively.
Phosphate nephropathy consists of damage to the kidneys caused by the formation of phosphate crystals within the kidney's tubules, damaging the nephron, and can cause acute kidney failure.
Phosphate nephropathy frequently occurs following the ingestion of oral sodium phosphate laxatives such as C.B. Fleet's Phospho soda and Salix's Visocol taken for bowel cleansing prior to a colonoscopy. The risk of this complication is increased with age, dehydration, or in the presence of hypertension or if the patient is taking an ACE inhibitor or angiotensin receptor blocker. Other agents used for bowel preparation (e.g. magnesium citrate or PEG-3350 & electrolyte-based purgatives such as Colyte or Golytely) do not carry this risk.
According to the U.S. Food and Drug Administration (FDA), "Acute phosphate nephropathy is a form of acute kidney injury that is associated with deposits of calcium-phosphate crystals in the renal tubules that may result in permanent renal function impairment. Acute phosphate nephropathy is a rare, serious adverse event that has been associated with the use of OSPs. The occurrence of these events was previously described in an Information for Healthcare Professionals sheet and an FDA Science Paper issued in May 2006. Additional cases of acute phosphate nephropathy have been reported to FDA and described in the literature since these were issued."
When a kidney damaged by phosphate nephropathy is biopsied, the pathological findings are typical of nephrocalcinosis: diffuse tubular injury with calcium phosphate crystal deposition.
It is the most common genetic cause of end stage renal disease (renal failure) in childhood and adolescence.
Proteinuria is the presence of excess proteins in the urine. In healthy persons, urine contains very little protein; an excess is suggestive of illness. Excess protein in the urine often causes the urine to become foamy, although foamy urine may also be caused by bilirubin in the urine (bilirubinuria), retrograde ejaculation, pneumaturia (air bubbles in the urine) due to a fistula, or drugs such as pyridium.
Diabetic nephropathy (diabetic kidney disease) (DN) is the chronic loss of kidney function occurring in those with diabetes mellitus. It is a serious complication, affecting around one-quarter of adult diabetics in the United States. It usually is slowly progressive over years. Pathophysiologic abnormalities in DN begin with long-standing poorly controlled blood glucose levels. This is followed by multiple changes in the filtration units of the kidneys, the nephrons. (There are normally about 3/4-1 1/2 million nephrons in each adult kidney). Initially, there is constriction of the efferent arterioles and dilation of afferent arterioles, with resulting glomerular capillary hypertension and hyperfiltration; this gradually changes to hypofiltration over time. Concurrently, there are changes within the glomerulus itself: these include a thickening of the basement membrane, a widening of the slit membranes of the podocytes, an increase in the number of mesangial cells, and an increase in mesangial matrix. This matrix invades the glomerular capillaries and produces deposits called Kimmelstiel-Wilson nodules. The mesangial cells and matrix can progressively expand and consume the entire glomerulus, shutting off filtration.
The status of DN may be monitored by measuring two values: the amount of protein in the urine - proteinuria; and a blood test called the serum creatinine. The amount of the proteinuria is a reflection of the degree of damage to any still-functioning glomeruli. The value of the serum creatinine can be used to calculate the estimated glomerular filtration rate (eGFR), which reflects the percentage of glomeruli which are no longer filtering the blood.
Treatment with an angiotensin converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB), which dilates the arteriole exiting the glomerulus, thus reducing the blood pressure within the glomerular capillaries, may delay - but not stop - progression of the disease. Also, three classes of diabetes medications - GLP-1 agonists, DPP-4 inhibitors, and SGLT2 inhibitors - may delay progression.
The proteinuria may become massive, and cause a low serum albumin with resulting generalized body swelling (edema): the nephrotic syndrome. Likewise, the eGFR may progressively fall from a normal of over 90 ml/min/1.73m to less than 15, at which point the patient is said to have end-stage kidney disease (ESKD). Diabetic nephropathy is the most common cause of ESKD, which may require hemodialysis and eventually kidney transplantation to replace the failed kidney function. Diabetic nephropathy is associated with an increased risk of death in general, particularly from cardiovascular disease.
Typically, the signs and symptoms of juvenile nephronophthisis are limited to the kidneys. They include polyuria, polydipsia, weakness, and fatigue.
Anemia, growth retardation, no hypertension.
Proteinuria and hematuria are usually absent. Polyuria is resistant to vasopressin.
When other organ systems are affected, symptoms can include situs inversus, heart abnormalities, and liver fibrosis. Juvenile nephronophthisis can also be associated with other rare disorders, including Senior–Løken syndrome and Joubert syndrome.
Symptoms (and signs) consistent with renal papillary necrosis are:
Signs and symptoms of chronic kidney disease, including loss of appetite, nausea, vomiting, itching, sleepiness or confusion, weight loss, and an unpleasant taste in the mouth, may develop.
There are three main mechanisms to cause proteinuria:
- Due to disease in the glomerulus
- Because of increased quantity of proteins in serum (overflow proteinuria)
- Due to low reabsorption at proximal tubule (Fanconi syndrome)
Proteinuria can also be caused by certain biological agents, such as bevacizumab (Avastin) used in cancer treatment. Excessive fluid intake (drinking in excess of 4 litres of water per day) is another cause.
Also leptin administration to normotensive Sprague Dawley rats during pregnancy significantly increases urinary protein excretion.
Proteinuria may be a sign of renal (kidney) damage. Since serum proteins are readily reabsorbed from urine, the presence of excess protein indicates either an insufficiency of absorption or impaired filtration. People with diabetes may have damaged nephrons and develop proteinuria. The most common cause of proteinuria is diabetes, and in any person with proteinuria and diabetes, the cause of the underlying proteinuria should be separated into two categories: diabetic proteinuria versus the field.
With severe proteinuria, general hypoproteinemia can develop which results in
diminished oncotic pressure. Symptoms of diminished oncotic pressure may include ascites, edema and hydrothorax.
Microalbuminuria (moderate increase in the levels of urinary albumin) is a non-specific finding in patients with vascular disease that is associated with increased risk of cardiovascular events. The majority of patients with benign nephrosclerosis have proteinuria in the range from 0.5 to 1 g/ 24hr. In the case of glomerular damage occurring in HN, hematuria can occur as well.
CFHR5 nephropathy usually presents with microscopic amounts of blood in the urine, detectable on a routine urine dipstick test. Sometimes the disease is associated with visible blood in the urine, usually at the time of respiratory or other infections and this is thought to result from stimulation of the immune system leading to damage in the kidneys.
Most patients with thin basement membrane disease are incidentally discovered to have microscopic hematuria on urinalysis. The blood pressure, kidney function, and the urinary protein excretion are usually normal. Mild proteinuria (less than 1.5 g/day) and hypertension are seen in a small minority of patients. Frank hematuria and loin pain should prompt a search for another cause, such as kidney stones or loin pain-hematuria syndrome. Also, there are no systemic manifestations, so presence of hearing impairment or visual impairment should prompt a search for hereditary nephritis such as Alport syndrome.
Complement factor H-related protein 5 (CFHR5) nephropathy (also known as "Troodos nephropathy") is a form of inherited kidney disease which is endemic in Cyprus and is caused by a mutation in the gene CFHR5. It is thought to affect up to 1:6000 Cypriots but has not been reported in anybody who is not of Cypriot descent.
Some general secondary causes are listed below:
- Glomerular hypertrophy/hyperfiltration
- Unilateral renal agenesis
- Morbid obesity
- Scarring due to previous injury
- Focal proliferative glomerulonephritis
- Vasculitis
- Lupus
- Toxins (pamidronate)
- Human immunodeficiency virus-associated nephropathy
- Heroin nephropathy
Focal segmental glomerulosclerosis may develop following acquired loss of nephrons from reflux nephropathy. Proteinuria is nonselective in most cases and may be in subnephrotic range (nephritic range <3.0gm/24hr) or nephritic range.
Sickle cell nephropathy is a type of nephropathy associated with sickle cell disease which causes kidney complications as a result of sickling of red blood cells in the small blood vessels. The hypertonic and relatively hypoxic environment of the renal medulla, coupled with the slow blood flow in the vasa recta, favors sickling of red blood cells, with resultant local infarction (papillary necrosis). Functional tubule defects in patients with sickle cell disease are likely the result of partial ischemic injury to the renal tubules.
Also the sickle cell disease in young patients is characterized by renal hyperperfusion, glomerular hypertrophy, and glomerular hyperfiltration. Many of these individuals eventually develop a glomerulopathy leading to glomerular proteinuria (present in as many as 30%) and, in some, the nephrotic syndrome. Co-inheritance of microdeletions in the -globin gene (thalassemia) appear to protect against the development of nephropathy and are associated with lower mean arterial pressure and less protein in the urine.
Mild increases in the blood levels of nitrogen and uric acid can also develop. Advanced kidney failure and high blood urea levels occur in 10% of cases. Pathologic examination reveals the typical lesion of "hyperfiltration nephropathy" namely, focal segmental glomerular sclerosis. This finding has led to the suggestion that anemia-induced hyperfiltration in childhood is the principal cause of the adult glomerulopathy. Nephron loss secondary to ischemic injury also contributes to the development of azotemia in these patients.
In addition to the glomerulopathy described above, kidney complications of sickle cell disease include cortical infarcts leading to loss of function, persistent bloody urine, and perinephric hematomas. Papillary infarcts, demonstrable radiographically in 50% of patients with sickle trait, lead to an increased risk of bacterial infection in the scarred kidney tissues and functional tubule abnormalities. The presence of visible blood in the urine without pain occurs with a higher frequency in sickle trait than in sickle cell disease and likely results from infarctive episodes in the renal medulla. Functional tubule abnormalities such as nephrogenic diabetes insipidus result from marked reduction in vasa recta blood flow, combined with ischemic tubule injury. This concentrating defect places these patients at increased risk of dehydration and, hence, sickling crises. The concentrating defect also occurs in individuals with sickle trait. Other tubule defects involve potassium and hydrogen ion excretion, occasionally leading to high blood potassium, metabolic acidosis, and a defect in uric acid excretion which, combined with increased purine synthesis in the bone marrow, results in high blood uric acid levels.
The histopathology is characterized by interstitial fibrosis, tubular atrophy,
fibrotic intimal thickening of arteries and glomerulosclerosis.