Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of CAH vary depending upon the form of CAH and the sex of the patient. Symptoms can include:
Due to inadequate mineralocorticoids:
- vomiting due to salt-wasting leading to dehydration and death
Due to excess androgens:
- functional and average sized penis in cases involving extreme virilization (but no sperm)
- ambiguous genitalia, in some females, such that it can be initially difficult to identify external genitalia as "male" or "female".
- early pubic hair and rapid growth in childhood
- precocious puberty or failure of puberty to occur (sexual infantilism: absent or delayed puberty)
- excessive facial hair, virilization, and/or menstrual irregularity in adolescence
- infertility due to anovulation
- clitoromegaly, enlarged clitoris and shallow vagina
Due to insufficient androgens and estrogens:
- Undervirilization in XY males, which can result in apparently female external genitalia
- In females, hypogonadism can cause sexual infantilism or abnormal pubertal development, infertility, and other reproductive system abnormalities
Mineralocorticoid manifestations of severe 11β-hydroxylase deficient CAH can be biphasic, changing from deficiency (salt-wasting) in early infancy to excess (hypertension) in childhood and adult life.
Salt-wasting in early infancy does not occur in most cases of 11β-OH CAH but can occur because of impaired production of aldosterone aggravated by inefficiency of salt conservation in early infancy. When it occurs it resembles the salt-wasting of severe 21-hydroxylase deficient CAH: poor weight gain and vomiting in the first weeks of life progress and culminate in life-threatening dehydration, hyponatremia, hyperkalemia, and metabolic acidosis in the first month.
Despite the inefficient production of aldosterone, the more characteristic mineralocorticoid effect of 11β-OH CAH is hypertension. Progressive adrenal hyperplasia due to persistent elevation of ACTH results in extreme overproduction of 11-deoxycorticosterone (DOC) by mid-childhood. DOC is a weak mineralocorticoid, but usually reaches high enough levels in this disease to cause effects of mineralocorticoid excess: salt retention, volume expansion, and hypertension.
The various signs and symptoms in Sheehan's syndrome are caused by damage to the pituitary, which causes a decrease in one or more hormones it normally secretes (see Pathophysiology section). Since the pituitary controls many glands in the endocrine system, partial or complete loss of a variety of functions may result.
Most common initial symptoms of Sheehan's syndrome are agalactorrhea (absence of lactation) and/or difficulties with lactation. Many women also report amenorrhea or oligomenorrhea after delivery. In some cases, a woman with Sheehan syndrome might be relatively asymptomatic, and the diagnosis is not made until years later, with features of hypopituitarism. Such features include secondary hypothyroidism with tiredness, intolerance to cold, constipation, weight gain, hair loss and slowed thinking, as well as a slowed heart rate and low blood pressure. Another such feature is secondary adrenal insufficiency, which, in the rather chronic case is similar to Addison's disease with symptoms including fatigue, weight loss, hypoglycemia (low blood sugar levels), anemia and hyponatremia (low sodium levels). Such a woman may, however, become acutely exacerbated when her body is stressed by, for example, a severe infection or surgery years after her delivery, a condition equivalent with an Addisonian crisis. The symptoms of adrenal crisis should be treated immediately and can be life-threatening. Gonadotropin deficiency will often cause amenorrhea, oligomenorrhea, hot flashes, or decreased libido. Growth hormone deficiency causes many vague symptoms including fatigue and decreased muscle mass.
Uncommonly, Sheehan syndrome may also appear acutely after delivery, mainly by hyponatremia. There are several possible mechanisms by which hypopituitarism can result in hyponatremia, including decreased free-water clearance by hypothyroidism, direct syndrome of inappropriate antidiuretic hormone (ADH) hypersecretion, decreased free-water clearance by glucocorticoid deficiency (independent of ADH). The potassium level in these situations is normal, because adrenal production of aldosterone is not dependent on the pituitary.
Female infants with classic CAH have ambiguous genitalia due to exposure to high concentrations of androgens in utero. CAH due to 21-hydroxylase deficiency is the most common cause of ambiguous genitalia in genotypically normal female infants (46XX). Less severely affected females may present with early pubarche. Young women may present with symptoms of polycystic ovarian syndrome (oligomenorrhea, polycystic ovaries, hirsutism).
Males with classic CAH generally have no signs of CAH at birth. Some may present with hyperpigmentation, due to co-secretion with melanocyte-stimulating hormone (MSH), and possible penile enlargement. Age of diagnosis of males with CAH varies and depends on the severity of aldosterone deficiency. Boys with salt-wasting disease present early with symptoms of hyponatremia and hypovolemia. Boys with non-salt-wasting disease present later with signs of virilization.
In rarer forms of CAH, males are under-masculinized and females generally have no signs or symptoms at birth.
Most infants born with lipoid CAH have had genitalia female enough that no disease was suspected at birth. Because the adrenal zona glomerulosa is undifferentiated and inactive before delivery, it is undamaged at birth and can make aldosterone for a while, so the eventual salt-wasting crisis develops more gradually and variably than with severe 21-hydroxylase-deficient CAH.
Most come to medical attention between 2 weeks and 3 months of age, when after a period of poor weight gain and vomiting, they were found to be dehydrated, with severe hyponatremia, hyperkalemia, and metabolic acidosis ("Addisonian or adrenal crisis"). Renin but not aldosterone is elevated. Many infants born with this condition died before a method for diagnosis was recognized for proper treatment to begin. In some cases, the condition is more mild with signs and symptoms of mineralocorticoid and glucocorticoid deficiency appearing after months or even years (late onset).
Because 11β-hydroxylase activity is not necessary in the production of sex steroids (androgens and estrogens), the hyperplastic adrenal cortex produces excessive amounts of DHEA, androstenedione, and especially testosterone.
These androgens produce effects that are similar to those of 21-hydroxylase deficient CAH. In the severe forms, XX (genetically female) fetuses can be markedly virilized, with ambiguous genitalia that look more male than female, though internal female organs, including ovaries and uterus develop normally.
XY fetuses (genetic males) typically show no abnormal features related to androgen excess. A megalopenis (>22 cm/8.7in) is usually present in male patients.
In milder mutations, androgen effects in both sexes appear in mid-childhood as early pubic hair, overgrowth, and accelerated bone age. Although "nonclassic" forms causing hirsutism and menstrual irregularities and appropriate steroid elevations have been reported, most have not had verifiable mutations and mild 11β-hydroxylase deficient CAH is currently considered a very rare cause of hirsutism and infertility.
All of the issues related to virilization, neonatal assignment, advantages and disadvantages of genital surgery, childhood and adult virilization, gender identity and sexual orientation are similar to those of 21-hydroxylase CAH and elaborated in more detail in Congenital adrenal hyperplasia.
Symptoms of the condition in males consist of loss of libido, impotence, infertility, shrinkage of the testicles, penis, and prostate, diminished masculinization (e.g., decreased facial and body hair growth), low muscle mass, anxiety, depression, fatigue, vasomotor symptoms (hot flashes), insomnia, headaches, and osteoporosis. In addition, symptoms of hyperestrogenism, such as gynecomastia and feminization, may be concurrently present in males.
In females, hypoandrogenism consist of loss of libido, decreased body hair growth, depression, fatigue, vaginal vasocongestion (which can result in cramps), vasomotor symptoms (e.g., hot flashes and palpitations), insomnia, headaches, osteoporosis and reduced muscle mass. Symptoms of hypoestrogenism may be present in both sexes in cases of severe androgen deficiency (as estrogens are synthesized from androgens).
Milder cases of lipoid CAH have been described that arise from less severe mutations that compromise but do not eliminate the ability of StAR to instigate steroid production. In these cases, mineralocorticoid deficiency emerges up to several years after birth. Sex steroid production may be sufficient to allow for normal sexual development as well and even fertility.
These nonclassic forms of the disorder are sometimes diagnosed as familial glucocorticoid deficiency type 3.
Hypoandrogenism is caused primarily by either dysfunction, failure, or absence of the gonads ("hypergonadotropic") or impairment of the hypothalamus or pituitary gland ("hypogonadotropic"), which in turn can be caused by a multitude of different stimuli, including genetic conditions (e.g., GnRH/gonadotropin insensitivity and enzymatic defects of steroidogenesis), tumors, trauma, surgery, autoimmunity, radiation, infections, toxins, drugs, and many others. Alternatively, it may be the result of conditions such as androgen insensitivity syndrome or hyperestrogenism. More simply, old age may also be a factor in the development of hypoandrogenism, as androgen levels decline with age.
Adrenal Adenomas are benign tumors on the adrenal gland. In most cases the tumors display no symptoms and require no treatment. In rare cases, however, some Adrenal Adenomas may become activated, in that they begin to produce hormones in much larger quantities than what adrenal glands tend to produce leading to a number of health complications including Primary aldosteronism and Hyperandrogenism.
The excessive amounts of adrenal testosterone produce little effect on the genitalia of male infants with severe CAH. If a male infant with CAH is not detected by newborn screening, he will appear healthy and normal and be quickly discharged home to his family.
However, the lack of aldosterone results in a high rate of sodium loss in the urine. Urinary sodium concentrations may exceed 50 mEq/L. With this rate of salt loss, the infant cannot maintain blood volume, and hyponatremic dehydration begins to develop by the end of the first week of life. Potassium and acid excretion are also impaired when mineralocorticoid activity is deficient, and hyperkalemia and metabolic acidosis gradually develop. Ability to maintain circulation is further limited by the effect of cortisol deficiency. The early symptoms are spitting and poor weight gain, but most infants with severe CAH develop vomiting, severe dehydration, and circulatory collapse (shock) by the second or third week of life.
When brought to a hospital, the 1-3 week old infant will be both underweight and dehydrated by appearance. Blood pressure may be low. Basic chemistries will reveal hyponatremia, with a serum Na typically between 105 and 125 mEq/L. Hyperkalemia in these infants can be extreme—levels of K above 10 mEq/L are not unusual—as can the degree of metabolic acidosis. Hypoglycemia may be present. This is termed a salt-wasting crisis and rapidly causes death if not treated.
As ill as these infants can be, they respond rapidly to treatment with hydrocortisone and intravenous saline and dextrose quickly restores blood volume, blood pressure, and body sodium content, and reverses the hyperkalemia. With appropriate treatment, most infants are out of danger within 24 hours.
Mutations that result in some residual 21-hydroxylase activity cause milder disease, traditionally termed simple virilizing CAH (SVCAH). In these children the mineralocorticoid deficiency is less significant and salt-wasting does not occur. However, genital ambiguities are possible.
Sheehan's syndrome, also known as postpartum pituitary gland necrosis, is hypopituitarism (decreased functioning of the pituitary gland), caused by ischemic necrosis due to blood loss and hypovolemic shock during and after childbirth.
Common signs and symptoms of Cushing's disease include the following:
- weight gain
- high blood pressure
- poor short-term memory
- irritability
- excess hair growth (women)
- Impaired immunological function
- red, ruddy face
- extra fat around neck
- moon face
- fatigue
- red stretch marks
- poor concentration
- irregular menstruation
For the diagnosis of hyperpituitarism it depends on the cell type(s) affected, clinical manifestations of hormone excess may include, gigantism or acromegaly, which can be identified by clinical and radiographic results. Cushing's disease diagnosis is done with a physical examination, laboratory tests and X rays of the pituitary glands (to locate tumors) For prolactinoma, diagnosis comes in the form of the measurement of serum prolactin levels and x-ray of pituitary gland.
Symptoms caused by hormone excess and associated mass effects include:
The symptoms of Cushing's disease are similar to those seen in other causes of Cushing's syndrome.
Patients with Cushing's disease usually present with one or more signs and symptoms secondary to the presence of excess cortisol or ACTH.
Although uncommon, some patients with Cushing's disease have large pituitary tumors (macroadenomas). In addition to the severe hormonal effects related to increased blood cortisol levels, the large tumor can compress adjacent structures. These tumors can compress the nerves that carry information from the eyes, causing a decrease in peripheral vision. Glaucoma and cataracts also may occur in Cushing's syndrome. In children, the two main symptoms are obesity and decreased linear growth.
The clinical diagnosis must be based on the presence of one or more of the symptoms listed below, because the syndrome itself has no true pathognomonic signs or symptoms. The most common symptoms seen in male patients are purple striae, muscle atrophy, osteoporosis, and kidney stones.
Hyperandrogenism, especially high levels of testosterone, can cause serious adverse effects on women’s bodies if left untreated. High testosterone levels have been seen to be associated with obesity, hypertension, amenorrhea(stop of menstrual cycles), and ovulatory dysfunction, which can lead to infertility. The more prominent signs of hyperandrogenism are hirsutism (unwanted growth of hair especially in the abdominal region and places on the back), acne after adolescence, deepening of voice, and alopecia(balding). Hyperandrogenism has also been seen to cause individuals to have a high tolerance to insulin, which can lead to type two diabetes, and dyslipidemia, such as high cholesterol. These effects have also been seen to have a large psychological impact on the individual, sometimes often leading to societal anxiety and depression, especially in adolescent girls and young women. Paired with obesity and hirsutism, it can cause the individual to have low self-esteem, and a poor view of oneself.
The symptoms of Addison's disease develop gradually and may become established before they are recognized. They can be nonspecific and are potentially attributable to other medical conditions.
The signs and symptoms include fatigue; lightheadedness upon standing or difficulty standing, muscle weakness, fever, weight loss, anxiety, nausea, vomiting, diarrhea, headache, sweating, changes in mood or personality, and joint and muscle pains. Some patients have cravings for salt or salty foods due to the loss of sodium through their urine. Hyperpigmentation of the skin may be seen, particularly when the patient lives in a sunny area, as well as darkening of the palmar crease, sites of friction, recent scars, the vermilion border of the lips, and genital skin. These skin changes are not encountered in secondary and tertiary hypoadrenalism.
On physical examination, these clinical signs may be noticed:
- Low blood pressure with or without orthostatic hypotension (blood pressure that decreases with standing)
- Darkening (hyperpigmentation) of the skin, including areas not exposed to the sun. Characteristic sites of darkening are skin creases (e.g., of the hands), nipple, and the inside of the cheek (buccal mucosa); also, old scars may darken. This occurs because melanocyte-stimulating hormone (MSH) and ACTH share the same precursor molecule, pro-opiomelanocortin (POMC). After production in the anterior pituitary gland, POMC gets cleaved into gamma-MSH, ACTH, and beta-lipotropin. The subunit ACTH undergoes further cleavage to produce alpha-MSH, the most important MSH for skin pigmentation. In secondary and tertiary forms of adrenal insufficiency, skin darkening does not occur, as ACTH is not overproduced.
Addison's disease is associated with the development of other autoimmune diseases, such as type I diabetes, thyroid disease (Hashimoto's thyroiditis), celiac disease, or vitiligo. Addison’s disease may be the only manifestation of undiagnosed celiac disease. Both diseases share the same genetic risk factors (HLA-DQ2 and HLA-DQ8 haplotypes).
The presence of Addison's in addition to mucocutaneous candidiasis, hypoparathyroidism, or both, is called autoimmune polyendocrine syndrome type 1. The presence of Addison's in addition to autoimmune thyroid disease, type 1 diabetes, or both, is called autoimmune polyendocrine syndrome type 2.
There are three major types of adrenal insufficiency.
- Primary adrenal insufficiency is due to impairment of the adrenal glands.
- 80% are due to an autoimmune disease called Addison's disease or autoimmune adrenalitis.
- One subtype is called idiopathic, meaning of unknown cause.
- Other cases are due to congenital adrenal hyperplasia or an adenoma (tumor) of the adrenal gland.
- Secondary adrenal insufficiency is caused by impairment of the pituitary gland or hypothalamus. Its principal causes include pituitary adenoma (which can suppress production of adrenocorticotropic hormone (ACTH) and lead to adrenal deficiency unless the endogenous hormones are replaced); and Sheehan's syndrome, which is associated with impairment of only the pituitary gland.
- Tertiary adrenal insufficiency is due to hypothalamic disease and a decrease in the release of corticotropin releasing hormone (CRH). Causes can include brain tumors and sudden withdrawal from long-term exogenous steroid use (which is the most common cause overall).
Adrenal gland disorders (or diseases) are conditions that interfere with the normal functioning of the adrenal glands. Adrenal disorders may cause hyperfunction or hypofunction, and may be congenital or acquired.
The adrenal gland produces hormones that affects growth, development and stress, and also helps to regulate kidney function. There are two parts of the adrenal glands, the adrenal cortex and the adrenal medulla. The adrenal cortex produces mineralocorticoids, which regulate salt and water balance within the body, glucocorticoids (including cortisol) which have a wide number of roles within the body, and androgens, hormones with testosterone-like function. The adrenal medulla produces epinephrine (adrenaline) and norepinephrine (noradrenaline). Disorders of the adrenal gland may affect the production of one or more of these hormones.
An "Addisonian crisis" or "adrenal crisis" is a constellation of symptoms that indicates severe adrenal insufficiency. This may be the result of either previously undiagnosed Addison's disease, a disease process suddenly affecting adrenal function (such as adrenal hemorrhage), or an intercurrent problem (e.g., infection, trauma) in someone known to have Addison's disease. It is a medical emergency and potentially life-threatening situation requiring immediate emergency treatment.
Characteristic symptoms are:
- Sudden penetrating pain in the legs, lower back, or abdomen
- Severe vomiting and diarrhea, resulting in dehydration
- Low blood pressure
- Syncope (loss of consciousness and ability to stand)
- Hypoglycemia (reduced level of blood glucose)
- Confusion, psychosis, slurred speech
- Severe lethargy
- Hyponatremia (low sodium level in the blood)
- Hyperkalemia (elevated potassium level in the blood)
- Hypercalcemia (elevated calcium level in the blood)
- Convulsions
- Fever
The symptoms of isolated 17,20-lyase deficiency, in males, include pseudohermaphroditism (i.e., feminized, ambiguous, or mildly underdeveloped (e.g., micropenis, perineal hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), female gender identity, and, in non-complete cases of deficiency where partial virilization occurs, gynecomastia up to Tanner stage V (due to low androgen levels, which results in a lack of suppression of estrogen); in females, amenorrhoea or, in cases of only partial deficiency, merely irregular menses, and enlarged cystic ovaries (due to excessive stimulation by high levels of gonadotropins); and in both sexes, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent adrenarche and puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
Signs and symptoms include: hypoglycemia, dehydration, weight loss, and disorientation. Additional signs and symptoms include weakness, tiredness, dizziness, low blood pressure that falls further when standing (orthostatic hypotension), cardiovascular collapse, muscle aches, nausea, vomiting, and diarrhea. These problems may develop gradually and insidiously. Addison's disease can present with tanning of the skin that may be patchy or even all over the body. Characteristic sites of tanning are skin creases (e.g. of the hands) and the inside of the cheek (buccal mucosa). Goitre and vitiligo may also be present. Eosinophilia may also occur.
Signs of hyperestrogenism may include heightened levels of one or more of the estrogen sex hormones (usually estradiol and/or estrone), lowered levels of follicle-stimulating hormone and/or luteinizing hormone (due to suppression of the hypothalamic–pituitary–gonadal axis by estrogen), and lowered levels of androgens such as testosterone (generally only relevant to males). Symptoms of the condition in women may consist of menstrual irregularities, amenorrhea, abnormal vaginal bleeding, and enlargement of the uterus and breasts. It may also present as isosexual precocity in children and as hypogonadism, gynecomastia, feminization, impotence, and loss of libido in males. If left untreated, hyperestrogenism may increase the risk of estrogen-sensitive cancers such as breast cancer later in life.