Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The onset of HLH occurs under the age of 1 year in ~70% of cases. Familial HLH should be suspected if siblings are diagnosed with HLH or if symptoms recur when therapy has been stopped. Each full sibling of a child with familial HLH has a 25% chance of developing the disease, a 50% chance of carrying the defective gene (which is very rarely associated with any risk of disease) and a 25% chance of not being affected and not carrying the gene defect.
Patients with HLH, especially when untreated, may need intensive therapy. Therefore, HLH should be included in the differential diagnosis of ICU (Intensive Care Unit) patients with cytopenia and hyperferritinemia.
HLH clinically manifests with fever, enlargement of the liver and spleen, enlarged lymph nodes, yellow discoloration of the skin and eyes, and a rash.
Hemophagocytic lymphohistiocytosis (HLH), also known as haemophagocytic lymphohistiocytosis (British spelling), and hemophagocytic or haemophagocytic syndrome, is an uncommon hematologic disorder seen more often in children than in adults. It is a life-threatening disease of severe hyperinflammation caused by uncontrolled proliferation of activated lymphocytes and macrophages, characterised by proliferation of morphologically benign lymphocytes and macrophages that secrete high amounts of inflammatory cytokines. It is classified as one of the cytokine storm syndromes.
Polycythemia (also known as polycythaemia or polyglobulia) is a disease state in which the hematocrit (the volume percentage of red blood cells in the blood) is elevated.
It can be due to an increase in the number of red blood cells ("absolute polycythemia") or to a decrease in the volume of plasma ("relative polycythemia"). Polycythemia is sometimes called erythrocytosis, but the terms are not synonymous, because polycythemia refers to any increase in red blood cells, whereas erythrocytosis only refers to a documented increase of red cell mass.
The emergency treatment of polycythemia (e.g., in hyperviscosity or thrombosis) is by phlebotomy (removal of blood from the circulation). Depending on the underlying cause, phlebotomy may also be used on a regular basis to reduce the hematocrit. Cytostatics such as busulfan and hydroxyurea are sometimes used for long-term management of polycythemia.
Primary polycythemias are due to factors intrinsic to red cell precursors. Polycythemia vera (PCV), polycythemia rubra vera (PRV), or erythremia, occurs when excess red blood cells are produced as a result of an abnormality of the bone marrow. Often, excess white blood cells and platelets are also produced. PCV is classified as a myeloproliferative disease. Symptoms include headaches and vertigo, and signs on physical examination include an abnormally enlarged spleen and/or liver. In some cases, affected individuals may have associated conditions including high blood pressure or formation of blood clots. Transformation to acute leukemia is rare. Phlebotomy is the mainstay of treatment. A hallmark of polycythemia is an elevated hematocrit, with Hct > 55% seen in 83% of cases. A somatic (non-hereditary) mutation (V617F) in the "JAK2" gene is found in 95% of cases, though also present in other myeloproliferative disorders.
Primary familial polycythemia, also known as primary familial and congenital polycythemia (PFCP), exists as a benign hereditary condition, in contrast with the myeloproliferative changes associated with acquired PCV. In many families, PFCP is due to an autosomal dominant mutation in the "EPOR" erythropoietin receptor gene. PFCP can cause an increase of up to 50% in the oxygen-carrying capacity of the blood; skier Eero Mäntyranta had PFCP, which is considered to have given him a large advantage in endurance events.
Symptoms of the familial form include visual impairment caused by diffuse corneal opacities, target cell hemolytic anemia, and renal failure. Less common symptoms include atherosclerosis, hepatomegaly (enlarged liver), splenomegaly (enlarged spleen), and lymphadenopathy.
Fish-eye disease is less severe and most commonly presents with impaired vision due to corneal opacification. It rarely presents with other findings, although, atherosclerosis, hepatomegaly, splenomegaly, and lymphadenopathy can occur. Carlson and Philipson found that the disease was named so because the cornea of the eye was so opaque or cloudy with dots of cholesterol that it resembled a boiled fish.
If an individual only carry one copy of the mutated gene, they typically do not show symptoms.
Myomatous erythrocytosis syndrome describes an excessive erythrocyte (red blood cells) production, occurring in about 0.5% of individuals affected by uterine leiomyomas (fibroids). This syndrome is believed to be caused by increased erythropoietin (EPO) production by the kidneys or by the leiomyomas themselves.
TEMPI Syndrome is a novel orphan disease where the person share five characteristics from which the acronym is derived: telangiectasias, elevated erythropoietin and erythrocytosis, monoclonal gammopathy, perinephric fluid collection, and intrapulmonary shunting.
The four men and two women were all diagnosed at middle age. The symptoms were slowly and steadily progressive. Telangiectasias developed over the face, trunk and arms. Increased serum erythropoietin levels, eventually exceeding 5000 mU /ml, preceded the intrapulmonary shunting and the development of hypoxemia. Sampling of the perinephric fluid revealed a clear, serous fluid with low levels of protein, few leukocytes and no cholesterol or triglycerides. An IgG monoclonal gammopathy was implicated in the four patients tested (with an associated kappa light chain in all three patients tested). Spontaneous venous thromboses occurred in three patients, two of whom also had spontaneous intracranial bleeding in the absence of blood vessels malformations.
Since then more patients with the syndrome have been reported.
Apolipoprotein B deficiency (also known as "Familial defective apolipoprotein B-100") is an autosomal dominant disorder resulting from a missense mutation which reduces the affinity of apoB-100 for the low-density lipoprotein receptor (LDL Receptor) . This causes impairments in LDL catabolism, resulting in increased levels of low-density lipoprotein in the blood. The clinical manifestations are similar to diseases produced by mutations of the LDL receptor, such as familial hypercholesterolemia. Treatment may include, niacin or statin or ezetimibe.
It is also known as "normotriglyceridemic hypobetalipoproteinemia".
The most common characteristics include a distinct craniofacial phenotype (microcephaly, micrognathia, short philtrum, prominent glabella, ocular hypertelorism, dysplastic ears and periauricular tags), growth restriction, intellectual disability, muscle hypotonia, seizures, and congenital heart defects. Less common characteristics include hypospadias, colobomata of the iris, renal anomalies, and deafness. Antibody deficiencies are also common, including common variable immunodeficiency and IgA deficiency. T-cell immunity is normal.
Lecithin cholesterol acyltransferase deficiency (LCAT deficiency) is a disorder of lipoprotein metabolism. The disease has two forms: Familial LCAT deficiency, in which there is complete LCAT deficiency, and Fish-eye disease, in which there is a partial deficiency.
Lecithin cholesterol acyltransferase catalyzes the formation of cholesterol esters in lipoproteins.
Wolf–Hirschhorn syndrome (WHS), also known as chromosome deletion Dillan 4p syndrome, Pitt–Rogers–Danks syndrome (PRDS) or Pitt syndrome, was first described in 1961 by Americans Herbert L. Cooper and Kurt Hirschhorn and, thereafter, gained worldwide attention by publications by the German Ulrich Wolf, and Hirschhorn and their co-workers, specifically their articles in the German scientific magazine "Humangenetik". It is a characteristic phenotype resulting from a partial deletion of chromosomal material of the short arm of chromosome 4 (del(4p16.3)).
There are seven types of attacks. Ninety percent of all patients have their first attack before they are 18 years old. All develop over 2–4 hours and last anywhere from 6 hours to 4 days. Most attacks involve fever.
1. Abdominal attacks, featuring abdominal pain, affect the whole abdomen with all signs of peritonitis (inflammation of abdominal lining), and acute abdominal pain like appendicitis. They occur in 95% of all patients and may lead to unnecessary laparotomy. Incomplete attacks, with local tenderness and normal blood tests, have been reported.
2. Joint attacks mainly occur in large joints, especially in the legs. Usually, only one joint is affected. 75% of all FMF patients experience joint attacks.
3. Chest attacks include pleuritis (inflammation of the pleura) and pericarditis (inflammation of the pericardium). Pleuritis occurs in 40% of patients and makes it difficult to breathe or lie flat, but pericarditis is rare.
4. Scrotal attacks due to inflammation of the tunica vaginalis occurs in up to 5% and may be mistaken for acute scrotum (i.e. testicular torsion).
5. Myalgia (rare in isolation)
6. Erysipeloid (a skin reaction on the legs, rare in isolation)
7. Fever without any of the other symptoms listed above (25%)
AA-amyloidosis with kidney failure is a complication and may develop without overt crises. AA amyloid protein is produced in very large quantities during attacks, and at a low rate between them, and accumulates mainly in the kidney, as well as the heart, spleen, gastrointestinal tract, and thyroid.
There appears to be an increase in the risk for developing particular vasculitis-related diseases (e.g. Henoch–Schönlein purpura), spondylarthropathy, prolonged arthritis of certain joints and protracted myalgia.
Familial Isolated Vitamin E Deficiency is caused by mutations in the gene for a-tocopherol transfer protein.
A number of syndromes escape formal classification but are otherwise recognisable by particular clinical or immunological features.
1. Wiskott–Aldrich syndrome
2. DNA repair defects not causing isolated SCID: ataxia-telangiectasia, ataxia-like syndrome, Nijmegen breakage syndrome, Bloom syndrome
3. DiGeorge syndrome (when associated with thymic defects)
4. Various immuno-osseous dysplasias (abnormal development of the skeleton with immune problems): cartilage–hair hypoplasia, Schimke syndrome
5. Hermansky–Pudlak syndrome type 2
6. Hyper-IgE syndrome
7. Chronic mucocutaneous candidiasis
8. Hepatic venoocclusive disease with immunodeficiency (VODI)
9. XL-dyskeratosis congenita (Hoyeraal-Hreidarsson syndrome)
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
Familial Isolated Vitamin E Deficiency also known as Ataxia With Vitamin E Deficiency is a rare autosomal recessive neurodegenerative disease. Symptoms are similar to those of Friedreich ataxia.
The onset of the disease is usually before age 2, but patients have been diagnosed with PFIC even into adolescence. Of the three entities, PFIC-3 usually presents earliest. Patients usually present in early childhood with cholestasis, jaundice, and failure to thrive. Intense pruritus is characteristic; in patients who present in adolescence, it has been linked with suicide. Patients may have fat malabsorption, leading to fat soluble vitamin deficiency, and complications, including osteopenia.
Progressive familial intrahepatic cholestasis (PFIC) is a group of familial cholestatic conditions caused by defects in biliary epithelial transporters. The clinical presentation usually occurs first in childhood with progressive cholestasis. This usually leads to failure to thrive, cirrhosis, and the need for liver transplantation.
Familial renal amyloidosis (or familial visceral amyloidosis, or hereditary amyloid nephropathy) is a form of amyloidosis primarily presenting in the kidney.
It is associated most commonly with congenital mutations in the fibrinogen alpha chain and classified as a dysfibrinogenemia (see Hereditary Fibrinogen Aα-Chain Amyloidosis). and, less commonly, with congenital mutations in apolipoprotein A1 and lysozyme.
It is also known as "Ostertag" type, after B. Ostertag, who characterized it in 1932 and 1950.
In 1820 Norris reported the first case of what is now recognized as FAMMM (12). He described a 59-year-old man with melanoma, a high total body mole count, and family history of the same.
AMS has been described by multiple authors and institutions, and various definitions have been adopted. According to Newton et al., a scoring system allotting one point per feature establishes AMS with scores greater than or equal to 3. The features include: 1) two or more clinically atypical nevi, 2) more than 100 nevi in patients between 20 and 50 years of age, 3) more than 50 nevi in patients under 20 years of age or more than 50 years of age, 4) more than one nevus in buttocks or instep, 5) nevi on the anterior scalp, 6) one or more pigmented lesions in the iris.
The Classical (1990) definition uses the following criteria: 1) 100 or more melanocytic nevi, 2) one or more melanocytic nevi greater than or equal to 8mm in its largest diameter, and 3) one or more clinically atypical melanocytic nevi.
The National Institutes of Health (NIH) Consensus 1992 definition, which is still controversial, requires a family history of melanoma, in addition to a large number of melanocytic nevi (often greater than 50) and melanocytic nevi that present certain histological features.
May–White syndrome is a rare familial progressive myoclonus epilepsy with lipomas, deafness, and ataxia. This syndrome is probably a familial form of mitochondrial encephalomyopathy.
Familial partial lipodystrophy (FPL), also known as Köbberling–Dunnigan syndrome, is a rare genetic metabolic condition characterized by the loss of subcutaneous fat.
FPL also refers to a rare metabolic condition in which there is a loss of subcutaneous fat in the arms, legs and lower torso. The upper section of the body, face, neck, shoulders, back and trunk carry an excess amount of fat.
As the body is unable to store fat correctly this leads to fat around all the vital organs and in the blood (triglycerides). This results in heart problems, cirrhosis of the liver, lipoatrophic diabetes, and pancreatitis, along with various other complications.