Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most common symptoms of acquired and transient cortical blindness include:
- A complete loss of visual sensation and of vision
- Preservation/sparing of the abilities to perceive light and/or moving, but not static objects (Riddoch syndrome)
- A lack of visual fixation and tracking
- Denial of visual loss (Anton–Babinski syndrome)
- Visual hallucinations
- Macular sparing, in which vision in the fovea is spared from the blindness.
Prosopagnosia, also called face blindness, is a cognitive disorder of face perception in which the ability to recognize familiar faces, including one's own face (self-recognition), is impaired, while other aspects of visual processing (e.g., object discrimination) and intellectual functioning (e.g., decision making) remain intact. The term originally referred to a condition following acute brain damage (acquired prosopagnosia), but a congenital or developmental form of the disorder also exists, which may affect up to 2.5% of the United States population. The specific brain area usually associated with prosopagnosia is the fusiform gyrus, which activates specifically in response to faces. The functionality of the fusiform gyrus allows most people to recognize faces in more detail than they do similarly complex inanimate objects. For those with prosopagnosia, the new method for recognizing faces depends on the less-sensitive object recognition system. The right hemisphere fusiform gyrus is more often involved in familiar face recognition than the left. It remains unclear whether the fusiform gyrus is only specific for the recognition of human faces or if it is also involved in highly trained visual stimuli.
There are two types of prosopagnosia: acquired and congenital (developmental). Acquired prosopagnosia results from occipito-temporal lobe damage and is most often found in adults. This is further subdivided into apperceptive and associative prosopagnosia. In congenital prosopagnosia, the individual never adequately develops the ability to recognize faces.
Though there have been several attempts at remediation, no therapies have demonstrated lasting real-world improvements across a group of prosopagnosics. Prosopagnosics often learn to use "piecemeal" or "feature-by-feature" recognition strategies. This may involve secondary clues such as clothing, gait, hair color, skin color, body shape, and voice. Because the face seems to function as an important identifying feature in memory, it can also be difficult for people with this condition to keep track of information about people, and socialize normally with others. Prosopagnosia has also been associated with other disorders that are associated with nearby brain areas: left hemianopsia (loss of vision from left side of space, associated with damage to the right occipital lobe), achromatopsia (a deficit in color perception often associated with unilateral or bilateral lesions in the temporo-occipital junction) and topographical disorientation (a loss of environmental familiarity and difficulties in using landmarks, associated with lesions in the posterior part of the parahippocampal gyrus and anterior part of the lingual gyrus of the right hemisphere). It is from the Greek: "prosopon" = "face" and "agnosia" = "not knowing".
A patient with cortical blindness has no vision but the response of his/her pupil to light is intact (as the reflex does not involve the cortex). Therefore, one diagnostic test for cortical blindness is to first objectively verify the optic nerves and the non-cortical functions of the eyes are functioning normally. This involves confirming that patient can distinguish light/dark, and that his/her pupils dilate and contract with light exposure. Then, the patient is asked to describe something he/she would be able to recognize with normal vision. For example, the patient would be asked the following:
- "How many fingers am I holding up?"
- "What does that sign (on a custodian's closet, a restroom door, an exit sign) say?"
- "What kind of vending machine (with a vivid picture of a well-known brand name on it) is that?"
Patients with cortical blindness will not be able to identify the item being questioned about at all or will not be able to provide any details other than color or perhaps general shape. This indicates that the lack of vision is neurological rather than ocular. It specifically indicates that the occipital cortex is unable to correctly process and interpret the intact input coming from the retinas.
Fundoscopy should be normal in cases of cortical blindness. Cortical blindness can be associated with visual hallucinations, denial of visual loss (Anton–Babinski syndrome), and the ability to perceive moving but not static objects. (Riddoch syndrome).
Quadrantanopia (quadrantanopsia or quadrantic hemianopsia) is decreased vision or blindness in one quarter of the visual field. The particular quarter of vision missing depends on whether the location of the brain damage is temporal or parietal, and the side of the lesion. For example, a lesion to the right temporal lobe with damage specifically to Meyer's loop will give rise to a left upper (superior) quadrantanopsia, while a lesion to the right parietal radiation with damage specifically to Baum's loop will result in a left lower (inferior) quadrantanopsia.
When the pathology involves both eyes, it is either homonymous or Heteronymous.
Visual agnosia is a broad category that refers to a deficiency in the ability to recognize visual objects. Visual agnosia can be further subdivided into two different subtypes: apperceptive visual agnosia and associative visual agnosia.
Individuals with apperceptive visual agnosia display the ability to see contours and outlines when shown an object, but they experience difficulty if asked to categorize objects. Apperceptive visual agnosia is associated with damage to one hemisphere, specifically damage to the posterior sections of the right hemisphere.
In contrast, individuals with associative visual agnosia experience difficulty when asked to name objects. Associative agnosia is associated with damage to both the right and left hemispheres at the occipitotemporal border. A specific form of associative visual agnosia is known as prosopagnosia. Prosopagnosia is the inability to recognize faces. For example, these individuals have difficulty recognizing friends, family and coworkers. However, individuals with prosopagnosia can recognize all other types of visual stimuli.
Agnosia is the inability to process sensory information. Often there is a loss of ability to recognize objects, persons, sounds, shapes, or smells while the specific sense is not defective nor is there any significant memory loss. It is usually associated with brain injury or neurological illness, particularly after damage to the occipitotemporal border, which is part of the ventral stream. Agnosia only affects a single modality, such as vision or hearing. More recently, a top-down interruption is considered to cause the disturbance of handling perceptual information.
"Associative prosopagnosia" has typically been used to describe cases of acquired prosopagnosia with spared perceptual processes but impaired links between early face perception processes and the semantic information we hold about people in our memories. Right anterior temporal regions may also play a critical role in associative prosopagnosia. People with this form of the disorder may be able to see whether photos of people's faces are the same or different and derive the age and sex from a face (suggesting they can make sense of some face information) but may not be able to subsequently identify the person or provide any information about them such as their name, occupation, or when they were last encountered.
Visual agnosia is an impairment in recognition of visually presented objects. It is not due to a deficit in vision (acuity, visual field, and scanning), language, memory, or low intellect. While cortical blindness results from lesions to primary visual cortex, visual agnosia is often due to damage to more anterior cortex such as the posterior occipital and/or temporal lobe(s) in the brain. There are two types of visual agnosia: apperceptive agnosia and associative agnosia.
Recognition of visual objects occurs at two primary levels. At an apperceptive level, the features of the visual information from the retina are put together to form a perceptual representation of an object. At an associative level, the meaning of an object is attached to the perceptual representation and the object is identified. If a person is unable to recognize objects because they cannot perceive correct forms of the objects, although their knowledge of the objects is intact (i.e. they do not have anomia), they have apperceptive agnosia. If a person correctly perceives the forms and has knowledge of the objects, but cannot identify the objects, they have associative agnosia.
Agnosias are sensory modality specific, usually classified as visual, auditory, or tactile. Associative visual agnosia refers to a subtype of visual agnosia, which was labeled by Lissauer (1890), as an inability to connect the visual percept (mental representation of something being perceived through the senses) with its related semantic information stored in memory, such as, its name, use, and description. This is distinguished from the visual apperceptive form of visual agnosia, "apperceptive visual agnosia", which is an inability to produce a complete percept, and is associated with a failure in higher order perceptual processing where feature integration is impaired, though individual features can be distinguished. In reality, patients often fall between both distinctions, with some degree of perceptual disturbances exhibited in most cases, and in some cases, patients may be labeled as integrative agnostics when they fit the criteria for both forms. Associative visual agnosias are often category-specific, where recognition of particular categories of items are differentially impaired, which can affect selective classes of stimuli, larger generalized groups or multiple intersecting categories. For example, deficits in recognizing stimuli can be as specific as familiar human faces or as diffuse as living things or non-living things.
An agnosia that affects hearing, "auditory sound agnosia", is broken into subdivisions based on level of processing impaired, and a "semantic-associative" form is investigated within the auditory agnosias.
Associative visual agnosia is a form of visual agnosia. It is an impairment in recognition or assigning meaning to a stimulus that is accurately perceived and not associated with a generalized deficit in intelligence, memory, language or attention. The disorder appears to be very uncommon in a "pure" or uncomplicated form and is usually accompanied by other complex neuropsychological problems due to the nature of the etiology. Afflicted individuals can accurately distinguish the object, as demonstrated by the ability to draw a picture of it or categorize accurately, yet they are unable to identify the object, its features or its functions.
Homonymous hemianopsia can be congenital, but is usually caused by brain injury such as from stroke, trauma, tumors, infection, or following surgery.
Vascular and neoplastic (malignant or benign tumours) lesions from the optic tract, to visual cortex can cause a contralateral homonymous hemianopsia. Injury to the right side of the brain will affect the left visual fields of each eye. The more posterior the cerebral lesion, the more symmetric (congruous) the homonymous hemianopsia will be. For example, a person who has a lesion of the right optic tract will no longer see objects on his left side. Similarly, a person who has a stroke to the right occipital lobe will have the same visual field defect, usually more congruent between the two eyes, and there may be macular sparing.
A stroke on the right side of the brain (especially parietal lobe), in addition to producing a homonymous hemianopsia, may also lead to the syndrome of hemispatial neglect.
Transient homonymous hemianopsia does not necessarily mean stroke. For instance, it can constitute the aura phase of migraine. Concomitant presence of a moving scintillating scotoma is suggestive of migraine, but has been seen in cerebral cancer as well. Computed tomography (CT scan) or MRI can be used to investigate if stroke, tumor, structural lesion, or demyelination is the cause of homonymous hemianopsia.
Homonymous hemianopsia secondary to posterior cerebral artery occlusion – may result in syndromes of memory impairment, opposite visual field loss (homonymous hemianopsia), and sometimes hemisensory deficits.
The PCA supplies the occipital lobe and the medial portion of the temporal lobe.
Infarction of occipital cortex typically causes macular sparing hemianopias due to dual blood supply.
Occlusion of the calcarine artery that results in infarction of the superior part of the occipital lobe causes a lower peripheral visual field defect.
Posterior cerebral artery penetrating branch occlusion may result in infarction of the posterior capsule, causing hemisensory loss, and (if low enough) a transient hemianopia may also occur.
Anton–Babinski syndrome is mostly seen following a stroke, but may also be seen after head injury. Neurologist Macdonald Critchley describes it thus:
The sudden development of bilateral occipital dysfunction is likely to produce transient physical and psychical effects in which mental confusion may be prominent. It may be some days before the relatives, or the nursing staff, stumble onto the fact that the patient has actually become sightless. This is not only because the patient ordinarily does not volunteer the information that they have become blind, but he furthermore misleads his entourage by behaving and talking as though they were sighted. Attention is aroused however when the patient is found to collide with pieces of furniture, to fall over objects, and to experience difficulty in finding his way around. They may try to walk through a wall or through a closed door on his way from one room to another. Suspicion is still further alerted when they begin to describe people and objects around them which, as a matter of fact, are not there at all.
Thus we have the twin symptoms of anosognosia (or lack of awareness of defect) and confabulation, the latter affecting both speech and behaviour.
Anton–Babinski syndrome may be thought of ideally as the opposite of blindsight, blindsight occurring when part of the visual field is not consciously experienced, but some reliable perception does in fact occur.
Deafblindness is the condition of little or no useful sight and little or no useful hearing. Educationally, individuals are considered to be deaf-blind when the combination of their hearing and sight loss causes such severe communication and other developmental and educational needs that they require significant and unique adaptations in their educational programs. Helen Keller was one such individual.
Total color blindness can be classified as:
- Acquired achromatopsia (Cerebral achromatopsia)
- Congenital/inherited achromatopsia
- Complete typical achromatopsia
- Incomplete atypical achromatopsia or incomplete atypical dyschromatopsia
Related terms:
- Achromatopsia–The complete lack of the perception of color in a subject, seeing only in black, white, and shades of grey.
- Amblyopia–Defined conceptually by Duke-Elder (1973) as a monocular acuity deficit which is not due to refractive error or any organic abnormality. A neural condition. Poor spatial performance of the precision optical servomechanism of the eyes at nominal illumination levels without any morphological cause. One form of lazy eye.
- Hemeralopia–Reduced visual capacity in bright light. Colloquially, day-blindness.
- Nystagmus–This term is used variously to describe both normal and pathological conditions related to the oculomotor system. In the current context, it is a pathological condition involving an uncontrolled oscillatory movement of the eyes during which the amplitude of oscillation is quite noticeable and the frequency of the oscillation tends to be quite low.
- Photophobia–The avoidance of bright light by those suffering from hemeralopia.
Broadly, visual agnosia is divided into apperceptive and associative visual agnosia.
Apperceptive agnosia is failure of object recognition even when the basic visual functions (acuity, color, motion) and other mental processing, such as language and intelligence, are normal. The brain must correctly integrate features such as edges, light intensity, and color from sensory information to form a complete percept of an object. If a failure occurs during this process, a percept of an object is not fully formed and thus it cannot be recognized. Tasks requiring copying, matching, or drawing simple figures can distinguish the individuals with apperceptive agnosia because they cannot perform such tasks.
Associative agnosia is an inability to identify objects even with apparent perception and knowledge of them. It involves a higher level of processing than apperceptive agnosia. Individuals with associative agnosia can copy or match simple figures, indicating that they can perceive objects correctly. They also display the knowledge of objects when tested with tactile or verbal information. However, when tested visually, they cannot name or describe common objects. This means that there is an impairment in associating the perception of objects with the stored knowledge of them.
Although visual agnosia can be general, there exist many variants that impair recognition of specific types. These variants of visual agnosia include prosopagnosia (inability to recognize faces), pure word blindness (inability to recognize words, often called "agnosic alexia" or "pure alexia"), agnosias for colors (inability to differentiate colors), agnosias for the environment (inability to recognize landmarks or difficult with spatial layout of an environment, i.e. topographagnosia) and simultanagosia (inability to sort out multiple objects in a visual scene).
Anton–Babinski syndrome, also known as visual anosognosia, is a rare symptom of brain damage occurring in the occipital lobe. Those who suffer from it are "cortically blind", but affirm, often quite adamantly and in the face of clear evidence of their blindness, that they are capable of seeing. Failing to accept being blind, the sufferer dismisses evidence of their condition and employs confabulation to fill in the missing sensory input. It is named after Gabriel Anton and Joseph Babinski.
In general, symptoms of incomplete achromatopsia are similar to those of complete achromatopsia except in a diminished form. Individuals with incomplete achromatopsia have reduced visual acuity with or without nystagmus or photophobia. Furthermore, these individuals show only partial impairment of cone cell function but again have retained rod cell function.
In binasal hemianopsia, vision is missing in the inner (nasal or medial) half of both the right and left visual fields. Information from the nasal visual field falls on the temporal (lateral) retina. Those lateral retinal nerve fibers do not cross in the optic chiasm. Calcification of the internal carotid arteries can impinge the uncrossed, lateral retinal fibers leading to loss of vision in the nasal field.
Note: Clinical testing of visual fields (by confrontation) can produce a false positive result (particularly in inferior nasal quadrants).
Peripheral Territory Lesions
1. Contralateral homonymous hemianopsia
2. cortical blindness with bilateral involvement of the occipital lobe branches
3. visual agnosia
4. prosopagnosia
5. dyslexia, Anomic aphasia, color naming and discrimination problems
6. memory defect
7. topographic disorientation
Central Territory Lesions
1. central post-stroke (thalamic) pain: spontaneous pain, dysesthesias and sensory impairments
2. involuntary movements: chorea, intention tremor, hemiballismus
3. contralateral hemiplegia
4. Weber’s syndrome: occulomotor nerve palsy
5. Bálint's syndrome: loss of voluntary eye movements optic ataxia, asimultagnosia (inability to understand visual objects)
Deafblind people communicate in many different ways as determined by the nature of their condition, the age of onset, and what resources are available to them. For example, someone who grew up deaf and experienced vision loss later in life is likely to use a sign language (in a visually modified or tactile form). Others who grew up blind and later became deaf are more likely to use a tactile mode of their spoken/written language. Methods of communication include:
- Use of residual hearing (speaking clearly, hearing aids) or sight (signing within a restricted visual field, writing with large print).
- Tactile signing, sign language, or a manual alphabet such as the American Manual Alphabet or Deaf-blind Alphabet (also known as "two-hand manual") with tactile or visual modifications.
- Interpreting services (such as sign language interpreters or communication aides).
- Communication devices such as Tellatouch or its computerized versions known as the TeleBraille and Screen Braille Communicator.
Multisensory methods have been used to help deafblind people enhance their communication skills. These can be taught to very young children with developmental delays (to help with pre-intentional communication), young people with learning difficulties, and older people, including those with dementia. One such process is Tacpac.
Deafblind amateur radio operators generally communicate on 2-way radios using Morse code.
In bitemporal hemianopsia vision is missing in the outer (temporal or lateral) half of both the right and left visual fields. Information from the temporal visual field falls on the nasal (medial) retina. The nasal retina is responsible for carrying the information along the optic nerve, and crosses to the other side at the optic chiasm. When there is compression at optic chiasm the visual impulse from both nasal retina are affected, leading to inability to view the temporal, or peripheral, vision. This phenomenon is known as bitemporal hemianopsia. Knowing the neurocircuitry of visual signal flow through the optic tract is very important in understanding bitemporal hemianopsia.
Bitemporal hemianopsia most commonly occurs as a result of tumors located at the mid-optic chiasm. Since the adjacent structure is the pituitary gland, some common tumors causing compression are pituitary adenomas and craniopharyngiomas. Also another relatively common neoplastic cause is meningiomas. A cause of vascular origin is an aneurysm of the anterior communicating artery which arise superior to the chiasm, enlarge, and compress it from above.
Binasal hemianopsia (or binasal hemianopia) is the medical description of a type of partial blindness where vision is missing in the inner half of both the right and left visual field. It is associated with certain lesions of the eye and of the central nervous system, such as congenital hydrocephalus.
Developmental regression is when a child loses an acquired function or fails to progress beyond a prolonged plateau after a period of relatively normal development. Developmental regression could be due to metabolic disorders, progressive hydrocephalus, worsening of seizures, increased spasticity, worsening of movement disorders or parental misconception of acquired milestones. The timing of onset of developmental regression can be established by repeated medical evaluations, prior photographs and home movies. Whether the neurologic decline is predominantly affecting the gray matter or the white matter of the brain needs to be ascertained. Seizures or EEG changes, movement disorders, blindness with retinal changes, personality changes and dementia are features suggestive of grey matter involvement.