Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is a genetic developmental disorder with clinical diversity characterized by hypoparathyroidism, sensorineural deafness and renal disease. Patients usually present with hypocalcaemia, tetany, or afebrile convulsions at any age. Hearing loss is usually bilateral and may range from mild to profound impairment. Renal disease includes nephrotic syndrome, cystic kidney, renal dysplasia, hypoplasia or aplasia, pelvicalyceal deformity, vesicoureteral reflux, chronic kidney disease, hematuria, proteinuria and renal scarring.
Michel aplasia, also known as complete labyrinthine aplasia (CLA), is a congenital abnormality of the inner ear. It is characterized by the bilateral absence of differentiated inner ear structures and results in complete deafness (anacusis).
Michel aplasia should not be confused with michel dysplasia. It may affect one or both ears.
"Aplasia" is the medical term for body parts that are absent or do not develop properly. In Michel aplasia, the undeveloped (anaplastic) body part is the bony labyrinth of the inner ear. Other nearby structures may be underdeveloped as well.
Abnormal development of the skeletal portions of the second arch
1. Nondifferentiation of the stapes, with resultant absence of round and oval window.
2. Abnormal course of the facial nerve.
Skull base abnormalities
1. Hypoplasia of the petrous temporal bone.
2. Hypoplastic and sclerotic petrous apex may mimic labyrinthitis ossificans.
3. Platybasia.
4. Aberrant course of jugular veins.
The common symptoms in all reported cases of primrose syndrome include ossified pinnae, learning disabilities or mental retardation, hearing problems, movement disorders (ataxia, paralysis, and parkinsonism among others (likely due, in part, to calcification of the basal ganglia), a torus palatinus (a neoplasm on the mouth's hard palate), muscle atrophy, and distorted facial features. Other symptoms usually occur, different in each case, but it is unknown whether or not these symptoms are caused by the same disease.
Symptoms include gingival fibromatosis, associated with hypoplasia of the distal phalanges, nail dysplasia, joint hypermobility, and sometimes hepatosplenomegaly. The nose and pinnae are usually large and poorly developed, which gives the individuals with the syndrome abnormal facial characteristics. Mental retardation may also occur. Both males and females are equally affected. Gingival fibromatosis is usually present at birth or appears short after. The term Zimmermann–Laband was coined by Carl Jacob Witkop in 1971.
Mondini dysplasia, also known as Mondini malformation and Mondini defect, is an abnormality of the inner ear that is associated with sensorineural hearing loss.
This deformity was first described in 1791 by Mondini after examining the inner ear of a deaf boy. The Mondini dysplasia describes a cochlea with incomplete partitioning and a reduced number of turns, an enlarged vestibular aqueduct and a dilated vestibule. A normal cochlea has two and a half turns, a cochlea with Mondini dysplasia has one and a half turns; the basal turns being normally formed with a dilated or cystic apical turn to the cochlear. The hearing loss can deteriorate over time either gradually or in a step-wise fashion, or may be profound from birth.
Hearing loss associated with Mondini dysplasia may first become manifest in childhood or early adult life. Some children may pass newborn hearing screen to lose hearing in infancy but others present with a hearing loss at birth. Hearing loss is often progressive and because of the associated widened vestibular aqueduct may progress in a step-wise fashion associated with minor head trauma. Vestibular function is also often affected. While the hearing loss is sensorineural a conductive element may exist probably because of the third window effect of the widened vestibular aqueduct. The Mondini dysplasia can occur in cases of Pendred Syndrome and Branchio-oto-renal syndrome and in other syndromes, but can occur in non-syndromic deafness.
Primrose syndrome is a rare, slowly progressive genetic disorder that can vary symptomatically between individual cases, but is generally characterised by ossification of the external ears, learning difficulties, and facial abnormalities. It was first described in 1982 in Scotland's Royal National Larbert Institution by Dr D.A.A. Primrose.
Primrose syndrome appears to occur spontaneously, regardless of family history. The cause is currently unknown and there are no known treatments.
Zimmermann–Laband syndrome (ZLS), also known as Laband–Zimmermann syndrome, and Laband's syndrome, is an extremely rare autosomal dominant congenital disorder.
Barakat syndrome, is a rare disease characterized by hypoparathyroidism, sensorineural deafness and renal disease, and hence also known as HDR syndrome. It was first described by Amin J. Barakat et al. in 1977.
Nonsyndromic deafness is hearing loss that is not associated with other signs and symptoms. In contrast, syndromic deafness involves hearing loss that occurs with abnormalities in other parts of the body. Genetic changes are related to the following types of nonsyndromic deafness.
- DFNA: nonsyndromic deafness, autosomal dominant
- DFNB: nonsyndromic deafness, autosomal recessive
- DFNX: nonsyndromic deafness, X-linked
- nonsyndromic deafness, mitochondrial
Each type is numbered in the order in which it was described. For example, DFNA1 was the first described autosomal dominant type of nonsyndromic deafness. Mitochondrial nonsyndromic deafness involves changes to the small amount of DNA found in mitochondria, the energy-producing centers within cells.
Most forms of nonsyndromic deafness are associated with permanent hearing loss caused by damage to structures in the inner ear. The inner ear consists of three parts: a snail-shaped structure called the cochlea that helps process sound, nerves that send information from the cochlea to the brain, and structures involved with balance. Loss of hearing caused by changes in the inner ear is called sensorineural deafness. Hearing loss that results from changes in the middle ear is called conductive hearing loss. The middle ear contains three tiny bones that help transfer sound from the eardrum to the inner ear. Some forms of nonsyndromic deafness involve changes in both the inner ear and the middle ear; this combination is called mixed hearing loss.
The severity of hearing loss varies and can change over time. It can affect one ear (unilateral) or both ears (bilateral). Degrees of hearing loss range from mild (difficulty understanding soft speech) to profound (inability to hear even very loud noises). The loss may be stable, or it may progress as a person gets older. Particular types of nonsyndromic deafness often show distinctive patterns of hearing loss. For example, the loss may be more pronounced at high, middle, or low tones.
Nonsyndromic deafness can occur at any age. Hearing loss that is present before a child learns to speak is classified as prelingual or congenital. Hearing loss that occurs after the development of speech is classified as postlingual.
BVVL is marked by a number of cranial nerve palsies, including those of the motor components involving the 7th and 9th-12th cranial nerves, spinal motor nerves, and upper motor neurons. Major features of BVVL include facial and neck weakness, fasciculation of the tongue, and neurological disorders from the cranial nerves. The neurological manifestations develop insidiously: they usually begin with sensorineural deafness, progress inexorably to paralysis, and often culminate in respiratory failure. Most mortality in patients has been from either respiratory infections or respiratory muscle paralysis. Pathological descriptions of BVVL include injury and depletion of 3rd-7th cranial nerves, loss of the spinal anterior horn cells, degeneration of Purkinje cells, as well as degeneration of the spinocerebellar and pyramidal tracts. The first symptoms in nearly all cases of BVVL is progressive vision loss and deafness, and the first initial symptoms are seen anywhere from one to three years.
Most cases of deafness are followed by a latent period that can extend anywhere from weeks to years, and this time is usually marked by cranial nerve degeneration. Neurological symptoms of BVVL include optic atrophy, cerebellar ataxia, retinitis pigmentosa, epilepsy and autonomic dysfunction. Non-neurological symptoms can include diabetes, auditory hallucinations, respiratory difficulties, color blindness, and hypertension.
In at least some case, the gene lesion involves a mutation in the "CSB" gene.
It can be associated with "ERCC6".
Keratitis–ichthyosis–deafness syndrome (also known as "Erythrokeratodermia progressiva Burns," "Ichthyosiform erythroderma, corneal involvement, and deafness," and "KID syndrome,") presents at birth/infancy and is characterized by pregressive corneal opacification, either mild generalized hyperkeratosis or discrete erythematous plaques, and neurosensory deafness.
It is caused by a mutation in connexin 26.
DeSanctis–Cacchione syndrome is an extremely rare disorder characterized by the skin and eye symptoms of xeroderma pigmentosum (XP) occurring in association with microcephaly, progressive mental retardation, retarded growth and sexual development, deafness, choreoathetosis, ataxia and quadriparesis.
Children with Maroteaux–Lamy syndrome usually have normal intellectual development but share many of the physical symptoms found in Hurler syndrome. Caused by the deficient enzyme N-acetylgalactosamine 4-sulfatase, Maroteaux–Lamy syndrome has a variable spectrum of severe symptoms. Neurological complications include clouded corneas, deafness, thickening of the dura (the membrane that surrounds and protects the brain and spinal cord), and pain caused by compressed or traumatized nerves and nerve roots.
Signs are revealed early in the affected child's life, with one of the first symptoms often being a significantly prolonged age of learning how to walk. By age 10 children have developed a shortened trunk, crouched stance, and restricted joint movement. In more severe cases, children also develop a protruding abdomen and forward-curving spine. Skeletal changes (particularly in the pelvic region) are progressive and limit movement. Many children also have umbilical hernia or inguinal hernias. Nearly all children have some form of heart disease, usually involving valve dysfunction.
An enzyme replacement therapy, galsulfase (Naglazyme), was tested on patients with Maroteaux–Lamy syndrome and was successful in that it improved growth and joint movement. An experiment was then carried out to see whether an injection of the missing enzyme into the hips would help the range of motion and pain. At a cost of $365,000 a year, Naglazyme is one of the world's most expensive drugs.
The RASopathies are developmental syndromes caused by germline mutations (or in rare cases by somatic mosaicism) in genes that alter the Ras subfamily and mitogen-activated protein kinases that control signal transduction, including:
- Capillary malformation-AV malformation syndrome
- Autoimmune lymphoproliferative syndrome
- Cardiofaciocutaneous syndrome
- Hereditary gingival fibromatosis type 1
- Neurofibromatosis type 1
- Noonan syndrome
- Costello syndrome, Noonan-like
- Legius syndrome, Noonan-like
- Noonan syndrome with multiple lentigines, formerly called LEOPARD syndrome, Noonan-like
Brown-Vialetto-Van-Laere syndrome (BVVL), sometimes known as Brown's Syndrome, is a rare degenerative disorder often initially characterized by progressive sensorineural deafness.
The syndrome most often affects children, adolescents, and young adults. As knowledge of BVVL grows some adult patients have now been diagnosed. There is no known cure, however with prompt treatment the prognosis may be positive with some patients stabilizing and even minor improvements noted in certain cases.
The age of onset is almost always before 3 months of age. Many infants are born preterm (1/3 cases) and dysmature. The babies are frequently small for dates. The placenta may be abnormal with non-specific inflammation on histology. Umbilical cord anomalies have occasionally been reported. In severe cases, signs in the brain may be detected on prenatal ultrasound.
The presentation is pleiomorphic, making the diagnosis difficult, but the most common features of this disease involve the skin, joints, and central nervous system.
All have a maculopapular urticarial skin rash that is often present at birth (75% cases). It is probably more correctly described as an urticarial-like rash. The presence of the rash varies with time, and biopsy of these skin lesions shows a perivascular inflammatory infiltrate including granulocytes.
In about 35-65% of cases, arthritis occurs. Joint signs are variably expressed and can lead to transient swelling without sequelae between crises, or to unpredictable anomalies of growth cartilage and long bones epiphyses suggestive of a pseudo-tumour. Biopsies reveal hypertrophic cartilage without inflammatory cells. This most commonly affects the large joints (knees, ankles, elbows, and wrists) but may also involve the small joints of the hands and feet. It is usually bilateral and painful. A common and characteristic feature is giant kneecaps. Severe cases may result in contractures (joint deformities).
Most patients eventually have neurological problems. These manifest themselves in three principal ways: chronic meningitis, involvement of both the optic tract and eye, and sensorineural hearing loss. The chronic meningitis presents with the features of chronically raised intracranial pressure: headaches, vomiting, ventriculomegaly, hydrocephalus, macromegaly, cerebral atrophy, and optic atrophy. Some of these features may be evidenced on prenatal ultrasound. In 50% of cases, intellectual deficit occurs. Seizures occur in 25% of cases, but other manifestations are rare. Histological examination shows infiltration of the meninges with polymorphs.
Ocular manifestations occur in 80% of cases and include uveitis (70%), papillary involvement, conjunctivitis, and optical neuritis. If untreated, these may result in blindness (25%). The sensorineural hearing loss occurs in 75%, and tends to be progressive leading to deafness in 20% of cases.
Almost all children are remarkably short and have growth delay. Fever is extremely common but inconstant and is most often mild. Anemia is frequent. Other findings that have been reported include macrocephaly (95%), large fontanelle, prominent forehead, flattening of the nasal bridge (saddleback nose), short and thick extremities, and finger clubbing. The liver and/or spleen may be enlarged. Lymph node enlargement may also be present.
Later in life, secondary amyloidosis may occur. Delayed puberty and secondary amenorrhoea are not uncommon. Hoarseness due to inflammation of the laryngeal cartilage has also been reported.
Usher syndrome is responsible for the majority of deaf-blindness. The word "syndrome" means that multiple symptoms occur together, in this case, deafness and blindness. It occurs in roughly 1 person in 23,000 in the United States, 1 in 28,000 in Norway and 1 in 12,500 in Germany. People with Usher syndrome represent roughly one-sixth of people with retinitis pigmentosa.
Usher syndrome is inherited in an autosomal recessive pattern. "Recessive" means both parents must contribute an appropriate gene for the syndrome to appear, and "autosomal" means the gene is not carried on one of the sex chromosomes (X or Y), but rather on one of the 22 other pairs. (See the article on human genetics for more details.)
The progressive blindness of Usher syndrome results from retinitis pigmentosa. The photoreceptor cells usually start to degenerate from the outer to the center of the retina, including the macula. The degeneration is usually first noticed as night blindness (nyctalopia); peripheral vision is gradually lost, restricting the visual field (tunnel vision), which generally progresses to complete blindness. The qualifier 'pigmentosa' reflects the fact that clumps of pigment may be visible by an ophthalmoscope in advanced stages of degeneration.
Although Usher syndrome has been classified clinically in several ways, the prevailing approach is to classify it into three clinical sub-types called Usher I, II and III in order of decreasing severity of deafness. Usher I and II are the more common forms; the fraction of people with Usher III is significant only in a few specific areas, such as Finland and Birmingham. As described below, these clinical subtypes may be further subdivided by the particular gene mutated; people with Usher I and II may have any one of six and three genes mutated, respectively, whereas only one gene has been associated with Usher III. The function of these genes is still poorly understood. The hearing impairment associated with Usher syndrome is better understood: damaged hair cells in the cochlea of the inner ear inhibit electrical impulses from reaching the brain.
SSHL is diagnosed via pure tone audiometry. If the test shows a loss of at least 30db in three adjacent frequencies, the hearing loss is diagnosed as SSHL. For example, a hearing loss of 30db would make conversational speech sound more like a whisper.
Cross–McKusick–Breen syndrome (also known as "Cross syndrome", "hypopigmentation and microphthalmia", and "oculocerebral-hypopigmentation syndrome") is an extremely rare disorder characterized by white skin, blond hair with yellow-gray metallic sheen, small eyes with cloudy corneas, jerky nystagmus, gingival fibromatosis and severe mental and physical retardation.
It was characterized in 1967.
Focal palmoplantar and gingival keratosis is a rare autosomal dominant disease whose clinical features, and in particular, pathologic alterations and molecular mechanisms remains to be well defined.
Juvenile hyaline fibromatosis (also known as "Fibromatosis hyalinica multiplex juvenilis," "Murray–Puretic–Drescher syndrome") is a very rare, autosomal recessive disease due to mutations in capillary morphogenesis protein-2 (CMG-2 gene). It occurs from early childhood to adulthood, and presents as slow-growing, pearly white or skin-colored dermal or subcutaneous papules or nodules on the face, scalp, and back, which may be confused clinically with neurofibromatosis.
Usher syndrome, also known as Hallgren syndrome, Usher-Hallgren syndrome, retinitis pigmentosa-dysacusis syndrome, or dystrophia retinae dysacusis syndrome, is an extremely rare genetic disorder caused by a mutation in any one of at least 11 genes resulting in a combination of hearing loss and visual impairment. It is a leading cause of deafblindness and is at present incurable.
Usher syndrome is classed into three subtypes according to onset and severity of symptoms. All three subtypes are caused by mutations in genes involved in the function of the inner ear and retina. These mutations are inherited in an autosomal recessive pattern.
Only 10 to 15 percent of the cases diagnosed as SSHL have an identifiable cause. Most cases are classified as idiopathic, also called sudden idiopathic hearing loss (SIHL) and idiopathic sudden sensorineural hearing loss (ISSHL or ISSNHL) The majority of evidence points to some type of inflammation in the inner ear as the most common cause of SSNHL.
- Viral - The swelling may be due to a virus. A herpes type virus is believed to be the most common cause of sudden sensorineural hearing loss. The herpes virus lays dormant in our bodies and reactivates for an unknown reason.
- Vascular ischemia of the inner ear or cranial nerve VIII (CN8)
- Perilymph fistula, usually due to a rupture of the round or oval windows and the leakage of perilymph. The patient will usually also experience vertigo or imbalance. A history of trauma is usually present and changes to hearing or vertigo occur with alteration in intracranial pressure such as with straining; lifting, blowing etc.
- Autoimmune - can be due to an autoimmune illness such as systemic lupus erythematosus, granulomatosis with polyangiitis