Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Tuberculosis may infect any part of the body, but most commonly occurs in the lungs (known as pulmonary tuberculosis). Extrapulmonary TB occurs when tuberculosis develops outside of the lungs, although extrapulmonary TB may coexist with pulmonary TB.
General signs and symptoms include fever, chills, night sweats, loss of appetite, weight loss, and fatigue. Significant nail clubbing may also occur.
If a tuberculosis infection does become active, it most commonly involves the lungs (in about 90% of cases). Symptoms may include chest pain and a prolonged cough producing sputum. About 25% of people may not have any symptoms (i.e. they remain "asymptomatic"). Occasionally, people may cough up blood in small amounts, and in very rare cases, the infection may erode into the pulmonary artery or a Rasmussen's aneurysm, resulting in massive bleeding. Tuberculosis may become a chronic illness and cause extensive scarring in the upper lobes of the lungs. The upper lung lobes are more frequently affected by tuberculosis than the lower ones. The reason for this difference is not clear. It may be due to either better air flow, or poor lymph drainage within the upper lungs.
Patients with miliary tuberculosis often experience non-specific signs, such as coughing and enlarged lymph nodes. Miliary tuberculosis can also present with enlarged liver (40% of cases), enlarged spleen (15%), inflammation of the pancreas (<5%), and multiple organ dysfunction with adrenal insufficiency (adrenal glands do not produce enough steroid hormones to regulate organ function). Miliary tuberculosis may also present with unilateral or bilateral pneumothorax rarely. Stool may also be diarrheal in nature and appearance.
Other symptoms include fever, hypercalcemia, chorodial tubercles and cutaneous lesions.
Firstly, many patients can experience a fever lasting several weeks with daily spikes in morning temperatures.
Secondly, hypercalcemia prevails in 16 to 51% of tuberculosis cases. It is thought that hypercalcemia occurs as a response to increased macrophage activity in the body. Such that, 1,25 dihydroxycholecalciferol (also referred to as calcitriol) improves the ability of macrophages to kill bacteria; however, higher levels of calcitriol lead to higher calcium levels, and thus hypercalcemia in some cases. Thus, hypercalcemia proves to be an important symptom of miliary tuberculosis.
Thirdly, chorodial tubercules, pale lesions on the optic nerve, typically indicate miliary tuberculosis in children. These lesions may occur in one eye or both; the number of lesions varies between patients. Chorodial tubercules may serve as important symptoms of miliary tuberculosis, since their presence can often confirm suspected diagnosis.
Lastly, between 10 and 30% of adults, and 20–40% of children with miliary tuberculosis have tuberculosis meningitis. This relationship results from myobacteria from miliary tuberculosis spreading to the brain and the subarachnoid space; as a result, leading to tuberculosis meningitis.
The risk factors for contracting miliary tuberculosis are being in direct contact with a person who has it, living in unsanitary conditions, and having an unhealthy diet. In the U.S., risk factors for contracting the disease include homelessness and HIV/AIDS.
Miliary tuberculosis is a form of tuberculosis that is characterized by a wide dissemination into the human body and by the tiny size of the lesions (1–5 mm). Its name comes from a distinctive pattern seen on a chest radiograph of many tiny spots distributed throughout the lung fields with the appearance similar to millet seeds—thus the term "miliary" tuberculosis. Miliary TB may infect any number of organs, including the lungs, liver, and spleen. Miliary tuberculosis is present in about 2% of all reported cases of tuberculosis and accounts for up to 20% of all extra-pulmonary tuberculosis cases.
Urogenital tuberculosis may cause strictures of the ureter, which, however, may heal when infection is treated.
The infection may affect the kidneys, ureter and bladder and may cause significant damage to each.
Usually the atypical causes also involve atypical symptoms:
- No response to common antibiotics such as sulfonamide and beta-lactams like penicillin.
- No signs and symptoms of lobar consolidation, meaning that the infection is restricted to small areas, rather than involving a whole lobe. As the disease progresses, however, the look can tend to lobar pneumonia.
- Absence of leukocytosis.
- Extrapulmonary symptoms, related to the causing organism.
- Moderate amount of sputum, or no sputum at all (i.e. non-productive).
- Lack of alveolar exudate.
- Despite general symptoms and problems with the upper respiratory tract (such as high fever, headache, a dry irritating cough followed later by a productive cough with radiographs showing consolidation), there are in general few physical signs. The patient looks better than the symptoms suggest.
The co-epidemic of tuberculosis (TB) and human immunodeficiency virus (HIV) is one of the major global health challenges in the present time. The World Health Organization (WHO) reports 9.2 million new cases of TB in 2006 of whom 7.7% were HIV-infected. Tuberculosis is the most common contagious infection in HIV-Immunocompromised patients leading to death. These both diseases become dreadful in combination as HIV declines the human immunity while tuberculosis becomes progressive due to defective immune system.This condition becomes more severe in case of multi-drug (MDRTB) and extensively drug resistant TB (XDRTB), which are difficult to treat and contribute to increased mortality. See Multi-drug-resistant tuberculosis. Tuberculosis can occur at any stage of HIV infection. The risk and severity of tuberculosis increases soon after infection with HIV. A study on gold miners of South Africa revealed that the risk of TB was doubled during the first year after HIV seroconversion. Although tuberculosis can be a relatively early manifestation of HIV infection, it is important to note that the risk of tuberculosis progresses as the CD4 cell count decreases along with the progression of HIV infection. The risk of TB generally remains high in HIV-infected patients above the background risk of the general population even with effective immune reconstitution with ART maintaining high CD4 cell counts.
A diagnosis of latent tuberculosis (LTB), also called latent tuberculosis infection (LTBI) means a patient is infected with "Mycobacterium tuberculosis", but the patient does not have active tuberculosis. Active tuberculosis can be contagious while latent tuberculosis is not, and it is therefore not possible to get TB from someone with latent tuberculosis. The main risk is that approximately 10% of these patients (5% in the first two years after infection and 0.1% per year thereafter) will go on to develop active tuberculosis. This is particularly true, and there is added risk, in particular situations such as medication that suppresses the immune system or advancing age.
The identification and treatment of people with latent TB is an important part of controlling this disease. Various treatment regimens are in use to treat latent tuberculosis, which generally need to be taken for several months.
Lobar pneumonia usually has an acute progression.
Classically, the disease has four stages:
- Congestion in the first 24 hours: This stage is characterized histologically by vascular engorgement, intra-alveolar fluid, small numbers of neutrophils, often numerous bacteria. Grossly, the lung is heavy and hyperemic
- Red hepatization or consolidation: Vascular congestion persists, with extravasation of red cells into alveolar spaces, along with increased numbers of neutrophils and fibrin. The filling of airspaces by the exudate leads to a gross appearance of solidification, or consolidation, of the alveolar parenchyma. This appearance has been likened to that of the liver, hence the term "hepatization".
- Grey hepatization: Red cells disintegrate, with persistence of the neutrophils and fibrin. The alveoli still appear consolidated, but grossly the color is paler and the cut surface is drier.
- Resolution (complete recovery): The exudate is digested by enzymatic activity, and cleared by macrophages or by cough mechanism. Enzymes produced by neutrophils will liquify exudates, and this will either be coughed up in sputum or be drained via lymph.
A Simon focus is a tuberculosis (TB) nodule that can form in the apex of the lung when a primary TB infection elsewhere in the body spreads to the lung apex via the bloodstream. Simon focus nodules are often calcified.
The initial lesion is usually a small focus of consolidation, less than 2cm in diameter and located within 1 to 2 cm of the apical pleura. In adolescence, Simon foci may become reactivated and develop into Assmann foci. Such foci are sharply circumscribed, firm, gray-white to yellow areas that have a variable amount of central caseation and peripheral fibrosis.
Conditions which commonly involve hemoptysis include bronchitis and pneumonia, lung cancers and tuberculosis. Other possible underlying causes include aspergilloma, bronchiectasis, coccidioidomycosis, pulmonary embolism, pneumonic plague, and cystic fibrosis. Rarer causes include hereditary hemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome), Goodpasture's syndrome, and granulomatosis with polyangiitis. In children, hemoptysis is commonly caused by the presence of a foreign body in the airway. The condition can also result from over-anticoagulation from treatment by drugs such as warfarin.
Blood-laced mucus from the sinus or nose area can sometimes be misidentified as symptomatic of hemoptysis (such secretions can be a sign of nasal or sinus cancer, but also a sinus infection). Extensive non-respiratory injury can also cause one to cough up blood. Cardiac causes like congestive heart failure and mitral stenosis should be ruled out.
The origin of blood can be identified by observing its color. Bright-red, foamy blood comes from the respiratory tract, whereas dark-red, coffee-colored blood comes from the gastrointestinal tract. Sometimes hemoptysis may be rust-colored.
The most common cause of minor hemoptysis is bronchitis.
- Lung cancer, including both non-small cell lung carcinoma and small cell lung carcinoma.
- Sarcoidosis
- Aspergilloma
- Tuberculosis
- Histoplasmosis
- Pneumonia
- Pulmonary edema
- Pulmonary embolism
- Foreign body aspiration and aspiration pneumonia
- Goodpasture's syndrome
- Granulomatosis with polyangiitis
- Eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome)
- Bronchitis
- Bronchiectasis
- Pulmonary embolism
- Anticoagulant use
- Trauma
- Lung abscess
- Mitral stenosis
- Tropical eosinophilia
- Bleeding disorders
- Hughes-Stovin Syndrome and other variants of Behçet's disease
- Squamous Cell Carcinoma Of Esophagus
Chest radiographs (X-ray photographs) often show a pulmonary infection before physical signs of atypical pneumonia are observable at all.
This is occult pneumonia. In general, occult pneumonia is rather often present in patients with pneumonia and can also be caused by "Streptococcus pneumoniae", as the decrease of occult pneumonia after vaccination of children with a pneumococcal vaccine suggests.
Infiltration commonly begins in the perihilar region (where the bronchus begins) and spreads in a wedge- or fan-shaped fashion toward the periphery of the lung field. The process most often involves the lower lobe, but may affect any lobe or combination of lobes.
Rare nowadays but include spread of infection to other lung segments, bronchiectasis, empyema, and bacteremia with metastatic infection such as brain abscess.
Onset of symptoms is often gradual, but in necrotizing staphylococcal or gram-negative bacillary pneumonias patients can be acutely ill. Cough, fever with shivering, and night sweats are often present. Cough can be productive of foul smelling purulent mucus (≈70%) or less frequently with blood in one third of cases). Affected individuals may also complain of chest pain, shortness of breath, lethargy and other features of chronic illness.
Those with a lung abscess are generally cachectic at presentation. Finger clubbing is present in one third of patients. Dental decay is common especially in alcoholics and children. On examination of the chest there will be features of consolidation such as localized dullness on percussion and bronchial breath sounds.
The most common organisms which cause lobar pneumonia are "Streptococcus pneumoniae", also called pneumococcus, "Haemophilus influenzae" and "Moraxella catarrhalis". "Mycobacterium tuberculosis", the tubercle bacillus, may also cause lobar pneumonia if pulmonary tuberculosis is not treated promptly.
Like other types of pneumonia, lobar pneumonia can present as community acquired, in immune suppressed patients or as nosocomial infection. However, most causative organisms are of the community acquired type.
Pathological specimens to be obtained for investigations include:
1. Sputum for culture, AAFBS and gram stain
2. Blood for full hemogram/complete blood count, ESR and other acute phase reactants
3. Procalcitonin test, more specific
The identification of the infectious organism (or other cause) is an important part of modern treatment of pneumonia. The anatomical patterns of distribution can be associated with certain organisms, and can help in selection of an antibiotic while waiting for the pathogen to be cultured.
Alveolar disease is visible on chest radiography as small, ill-defined nodules of homogeneous density centered on the acini or bronchioles. The nodules coalesce early in the course of disease, such that the nodules may only be seen as soft fluffy edges in the periphery.
When the nodules are centered on the hilar regions, the chest x-ray may develop what is called the "butterfly," or "batwing" appearance. The nodules may also have a segmental or lobar distribution. Air alveolograms and air bronchograms can also be seen.
These findings appear soon after the onset of symptoms and change rapidly thereafter.
A segmental or lobar pattern may be apparent after aspiration pneumonia, atelectasis, lung contusion, localized pulmonary edema, obstructive pneumonia, pneumonia, pulmonary embolism with infarction, or tuberculosis.
If symptoms of histoplasmosis infection occur, they will start within 3 to 17 days after exposure; the average is 12–14 days. Most affected individuals have clinically silent manifestations and show no apparent ill effects. The acute phase of histoplasmosis is characterized by non-specific respiratory symptoms, often cough or flu-like. Chest X-ray findings are normal in 40–70% of cases. Chronic histoplasmosis cases can resemble tuberculosis; disseminated histoplasmosis affects multiple organ systems and is fatal unless treated.
While histoplasmosis is the most common cause of mediastinitis, this remains a relatively rare disease. Severe infections can cause hepatosplenomegaly, lymphadenopathy, and adrenal enlargement. Lesions have a tendency to calcify as they heal.
Presumed ocular histoplasmosis syndrome (POHS) causes chorioretinitis, where the choroid and retina of the eyes are scarred, resulting in a loss of vision not unlike macular degeneration. Despite its name, the relationship to "Histoplasma" is controversial. Distinct from POHS, acute ocular histoplasmosis may rarely occur in immunodeficiency.
Alveolar lung diseases, are a group of diseases that mainly affect the alveoli of the lungs.
Cavitary pneumonia is a disease in which the normal lung architecture is replaced by a cavity. In a healthy lung, oxygen transport occurs at the level of the alveoli, each of which has an average size of 0.1 mm. These air spaces can become enlarged by a number of processes: bacterial infection (tuberculosis), fungal infection, vasculitis (granulomatosis with polyangiitis), collagen vascular disease (Sjögren's syndrome) or granulomatous disease (sarcoidosis).
Extensively drug-resistant tuberculosis (XDR-TB) is a form of tuberculosis caused by bacteria that are resistant to some of the most effective anti-TB drugs. XDR-TB strains have arisen after the mismanagement of individuals with multidrug-resistant TB (MDR-TB).
Almost one in four people in the world is infected with TB bacteria. Only when the bacteria become active do people become ill with TB. Bacteria become active as a result of anything that can reduce the person’s immunity, such as HIV, advancing age, or some medical conditions. TB can usually be treated with a course of four standard, or first-line, anti-TB drugs (i.e., isoniazid, rifampin and any fluoroquinolone). If these drugs are misused or mismanaged, multidrug-resistant TB (MDR-TB) can develop. MDR-TB takes longer to treat with second-line drugs (i.e., amikacin, kanamycin, or capreomycin), which are more expensive and have more side-effects. XDR-TB can develop when these second-line drugs are also misused or mismanaged and therefore also become ineffective.
XDR-TB raises concerns of a future TB epidemic with restricted treatment options, and jeopardizes the major gains made in TB control and progress on reducing TB deaths among people living with HIV/AIDS. It is therefore vital that TB control be managed properly and new tools developed to prevent, treat and diagnose the disease.
The true scale of XDR-TB is unknown as many countries lack the necessary equipment and capacity to accurately diagnose it. It is estimated however that there are around 40,000 cases per year. As of June 2008, 49 countries had confirmed cases of XDR-TB. As of 2017, that number had risen to more than 100.
Pneumocystosis is an infection by "Pneumocystis jirovecii"that primarily occurs as a pulmonary infection AIDS patients, with extrapulmonary involvement being uncommon but, if occurring in the skin, presenting most often as nodular growths in the auditory canal.
Hemoptysis is the coughing up of blood or blood-stained mucus from the bronchi, larynx, trachea, or lungs. This can occur with lung cancer, infections such as tuberculosis, bronchitis, or pneumonia, and certain cardiovascular conditions. Hemoptysis is considered massive at . In such cases, there are always severe injuries. The primary danger comes from choking, rather than blood loss.
Totally drug-resistant tuberculosis (TDR-TB) is a generic term for tuberculosis strains that are resistant to a wider range of drugs than strains classified as extensively drug-resistant tuberculosis. TDR-TB has been identified in three countries; India, Iran, and Italy. The emergence of TDR-TB has been documented in four major publications. However, it is not yet recognised by the World Health Organization.
TDR-TB has resulted from further mutations within the bacterial genome to confer resistance, beyond those seen in XDR- and MDR-TB. Development of resistance is associated with poor management of cases. Drug resistance testing occurs in only 9% of TB cases worldwide. Without testing to determine drug resistance profiles, MDR- or XDR-TB patients may develop resistance to additional drugs. TDR-TB is relatively poorly documented, as many countries do not test patient samples against a broad enough range of drugs to diagnose such a comprehensive array of resistance. The United Nations' Special Programme for Research and Training in Tropical Diseases has set up a TDR Tuberculosis Specimen Bank to archive specimens of TDR-TB.
Multi-drug-resistant tuberculosis (MDR-TB) is a form of tuberculosis (TB) infection caused by bacteria that are resistant to treatment with at least two of the most powerful first-line anti-TB medications (drugs), isoniazid and rifampin. Some forms of TB are also resistant to second-line medications, and are called extensively drug-resistant TB (XDR-TB).
Tuberculosis is caused by infection with the bacteria Mycobacterium tuberculosis. Almost one in four people in the world are infected with TB bacteria. Only when the bacteria become active do people become ill with TB. Bacteria become active as a result of anything that can reduce the person’s immunity, such as HIV, advancing age, diabetes or other immunocompromising illnesses. TB can usually be treated with a course of four standard, or first-line, anti-TB drugs (i.e., isoniazid, rifampin and any fluoroquinolone).
However, beginning with the first antibiotic treatment for TB in 1943, some strains of the TB bacteria developed resistance to the standard drugs through genetic changes (see mechanisms.) Currently the majority of multidrug-resistant cases of TB are due to one strain of TB bacteria called the Beijing lineage. This process accelerates if incorrect or inadequate treatments are used, leading to the development and spread of multidrug-resistant TB (MDR-TB). Incorrect or inadequate treatment may be due to use of the wrong medications, use of only one medication (standard treatment is at least two drugs), not taking medication consistently or for the full treatment period (treatment is required for several months). Treatment of MDR-TB requires second-line drugs (i.e., fluoroquinolones, aminoglycosides, and others), which in general are less effective, more toxic and much more expensive than first-line drugs. Treatment schedules for MDR-TB involving fluoroquinolones and aminoglycosides can run for 2 years, compared to the 6 months of first-line drug treatment, and cost over $100,000 USD.If these second-line drugs are prescribed or taken incorrectly, further resistance can develop leading to XDR-TB.
Resistant strains of TB are already present in the population, so MDR-TB can be directly transmitted from an infected person to an uninfected person. In this case a previously untreated person develops a new case of MDR-TB. This is known as primary MDR-TB, and is responsible for up to 75% of cases. Acquired MDR-TB develops when a person with a non-resistant strain of TB is treated inadequately, resulting in the development of antibiotic resistance in the TB bacteria infecting them. These people can in turn infect other people with MDR-TB.
MDR-TB caused an estimated 480,000 new TB cases and 250,000 deaths in 2015. MDR-TB accounts for 3.3% of all new TB cases worldwide. Resistant forms of TB bacteria, either MDR-TB or rifampin-resistant TB, cause 3.9% of new TB cases and 21% of previously treated TB cases. Globally, most MDR-TB cases occur in South America, Southern Africa, India, China, and the former Soviet Union.
Treatment of MDR-TB requires treatment with second-line drugs, usually four or more anti-TB drugs for a minimum of 6 months, and possibly extending for 18–24 months if rifampin resistance has been identified in the specific strain of TB with which the patient has been infected. Under ideal program conditions, MDR-TB cure rates can approach 70%.