Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Common symptoms of mercury poisoning include peripheral neuropathy, presenting as paresthesia or itching, burning, pain, or even a sensation that resembles small insects crawling on or under the skin (formication); skin discoloration (pink cheeks, fingertips and toes); swelling; and desquamation (shedding or peeling of skin).
Mercury irreversibly inhibits selenium-dependent enzymes (see below) and may also inactivate "S"-adenosyl-methionine, which is necessary for catecholamine catabolism by catechol-"O"-methyl transferase. Due to the body's inability to degrade catecholamines (e.g. epinephrine), a person suffering from mercury poisoning may experience profuse sweating, tachycardia (persistently faster-than-normal heart beat), increased salivation, and hypertension (high blood pressure).
Affected children may show red cheeks, nose and lips, loss of hair, teeth, and nails, transient rashes, hypotonia (muscle weakness), and increased sensitivity to light. Other symptoms may include kidney dysfunction (e.g. Fanconi syndrome) or neuropsychiatric symptoms such as emotional lability, memory impairment, or insomnia.
Thus, the clinical presentation may resemble pheochromocytoma or Kawasaki disease. Desquamation (skin peeling) can occur with severe mercury poisoning acquired by handling elemental mercury.
Beryllium poisoning is poisoning by the toxic effects of beryllium, or more usually its compounds. It takes two forms:
- Acute beryllium poisoning, usually as a result of exposure to soluble beryllium salts
- Chronic beryllium disease (CBD) or berylliosis, usually as a result of long-term exposure to beryllium oxide usually caused by inhalation.
The signs and symptoms are generally flu-like. They include fever, chills, nausea, headache, fatigue, muscle aches, joint pains, lack of appetite, shortness of breath, pneumonia, chest pain, change in blood pressure, and coughing. A sweet or metallic taste in the mouth may also be reported, along with a dry or irritated throat which may lead to hoarseness. Symptoms of a more severe metal toxicity may also include a burning sensation in the body, shock, no urine output, collapse, convulsions, shortness of breath, yellow eyes or yellow skin, rash, vomiting, watery or bloody diarrhea or low or high blood pressure, which require prompt medical attention. Flu-like symptoms normally disappear within 24 to 48 hours. Full recovery often requires one to three weeks.
Mercury poisoning is a type of metal poisoning due to mercury exposure. Symptoms depend upon the type, dose, method, and duration of exposure. They may include muscle weakness, poor coordination, numbness in the hands and feet, skin rashes, anxiety, memory problems, trouble speaking, trouble hearing, or trouble seeing. High level exposure to methylmercury is known as Minamata disease. Methylmercury exposure in children may result in acrodynia (pink's disease) in which the skin becomes pink and peels. Long-term complications may include kidney problems and decreased intelligence. The effects of long-term low-dose exposure to methylmercury is unclear.
Forms of mercury exposure include metal, vapor, salt, and organic compound. Most exposure is from eating fish, amalgam based dental fillings, or exposure at work. In fish, those higher up in the food chain generally have higher levels of mercury. Less commonly poisoning may occur as an attempt to end one's life. Human activities that release mercury into the environment include the burning of coal and mining of gold. Tests of the blood, urine, and hair for mercury are available but do not relate well to the amount in the body.
Prevention includes eating a diet low in mercury, removing mercury from medical and other devices, proper disposal of mercury, and not mining further mercury. In those with acute poisoning from inorganic mercury salts, chelation with either dimercaptosuccinic acid (DMSA) or dimercaptopropane sulfonate (DMPS) appears to improve outcomes if given within a few hours of exposure. Chelation for those with long-term exposure is of unclear benefit. In certain communities that survive on fishing, rates of mercury poisoning among children have been as high as 1.7 per 100.
Symptoms of arsenic poisoning begin with headaches, confusion, severe diarrhea, and drowsiness. As the poisoning develops, convulsions and changes in fingernail pigmentation called leukonychia striata (Mees's lines, or Aldrich-Mees's lines) may occur. When the poisoning becomes acute, symptoms may include diarrhea, vomiting, vomiting blood, blood in the urine, cramping muscles, hair loss, stomach pain, and more convulsions. The organs of the body that are usually affected by arsenic poisoning are the lungs, skin, kidneys, and liver. The final result of arsenic poisoning is coma and death.
Arsenic is related to heart disease (hypertension-related cardiovascular disease), cancer, stroke (cerebrovascular diseases), chronic lower respiratory diseases, and diabetes.
Chronic exposure to arsenic is related to vitamin A deficiency, which is related to heart disease and night blindness.
Inorganic arsenites (arsenic(III)) in drinking water have a much higher acute toxicity than organic arsenates (arsenic(V)). The acute minimal lethal dose of arsenic in adults is estimated to be 70 to 200 mg or 1 mg/kg/day.
Poisoning is a condition or a process in which an organism becomes chemically harmed (poisoned) by a toxic substance or venom of an animal.
Acute poisoning is exposure to a poison on one occasion or during a short period of time. Symptoms develop in close relation to the degree of exposure. Absorption of a poison is necessary for systemic poisoning (that is, in the blood throughout the body). In contrast, substances that destroy tissue but do not absorb, such as lye, are classified as corrosives rather than poisons. Furthermore, many common household medications are not labeled with skull and crossbones, although they can cause severe illness or even death. In the medical sense, toxicity and poisoning can be caused by less dangerous substances than those legally classified as a poison. Toxicology is the study and practice of the symptoms, mechanisms, diagnosis, and treatment of poisoning.
Chronic poisoning is long-term repeated or continuous exposure to a poison where symptoms do not occur immediately or after each exposure. The patient gradually becomes ill, or becomes ill after a long latent period. Chronic poisoning most commonly occurs following exposure to poisons that bioaccumulate, or are biomagnified, such as mercury, gadolinium, and lead.
Contact or absorption of poisons can cause rapid death or impairment. Agents that act on the nervous system can paralyze in seconds or less, and include both biologically derived neurotoxins and so-called nerve gases, which may be synthesized for warfare or industry.
Inhaled or ingested cyanide, used as a method of execution in gas chambers, almost instantly starves the body of energy by inhibiting the enzymes in mitochondria that make ATP. Intravenous injection of an unnaturally high concentration of potassium chloride, such as in the execution of prisoners in parts of the United States, quickly stops the heart by eliminating the cell potential necessary for muscle contraction.
Most biocides, including pesticides, are created to act as poisons to target organisms, although acute or less observable chronic poisoning can also occur in non-target organisms (secondary poisoning), including the humans who apply the biocides and other beneficial organisms. For example, the herbicide 2,4-D imitates the action of a plant hormone, which makes its lethal toxicity specific to plants. Indeed, 2,4-D is not a poison, but classified as "harmful" (EU).
Many substances regarded as poisons are toxic only indirectly, by toxication. An example is "wood alcohol" or methanol, which is not poisonous itself, but is chemically converted to toxic formaldehyde and formic acid in the liver. Many drug molecules are made toxic in the liver, and the genetic variability of certain liver enzymes makes the toxicity of many compounds differ between individuals.
Exposure to radioactive substances can produce radiation poisoning, an unrelated phenomenon.
Generally associated with exposure to beryllium levels at or above 100 μg/m, it produces severe cough, sore nose and throat, weight loss, labored breathing, anorexia, and increased fatigue.
In addition to beryllium's toxicity when inhaled, when brought into contact with skin at relatively low doses, beryllium can cause local irritation and contact dermatitis, and contact with skin that has been scraped or cut may cause rashes or ulcers. Beryllium dust or powder can irritate the eyes.
Metal fume fever, also known as brass founders' ague, brass shakes, zinc shakes, galvie flu, metal dust fever, Welding Shivers, or Monday morning fever, is an illness primarily caused by exposure to chemicals such as zinc oxide (ZnO), aluminum oxide (AlO), or magnesium oxide (MgO) which are produced as byproducts in the fumes that result when certain metals are heated. Other common sources are fuming silver, gold, platinum, chromium (from stainless steel), nickel, arsenic, manganese, beryllium, cadmium, cobalt, lead, selenium, and zinc.
Welders are commonly exposed to the substances that cause metal fume fever from the base metal, plating, or filler. Brazing and soldering can also cause metal poisoning due to exposure to lead, zinc, copper, or cadmium. In extreme cases, cadmium (present in some older silver solder alloys) can cause loss of consciousness.
Metal toxicity or metal poisoning is the toxic effect of certain metals in certain forms and doses on life. Some metals are toxic when they form poisonous soluble compounds. Certain metals have no biological role, i.e. are not essential minerals, or are toxic when in a certain form. In the case of lead, any measurable amount may have negative health effects. Often heavy metals are thought as synonymous, but lighter metals may also be toxic in certain circumstances, such as beryllium and lithium. Not all heavy metals are particularly toxic, and some are essential, such as iron. The definition may also include trace elements when in abnormally high doses may be toxic. An option for treatment of metal poisoning may be chelation therapy, which is a technique which involves the administration of chelation agents to remove metals from the body.
Toxic metals sometimes imitate the action of an essential element in the body, interfering with the metabolic process resulting in illness. Many metals, particularly heavy metals are toxic, but some heavy metals are essential, and some, such as bismuth, have a low toxicity. Most often the definition of toxic metals includes at least cadmium, manganese, lead, mercury and the radioactive metals. Metalloids (arsenic, polonium) may be included in the definition. Radioactive metals have both radiological toxicity and chemical toxicity. Metals in an oxidation state abnormal to the body may also become toxic: chromium(III) is an essential trace element, but chromium(VI) is a carcinogen.
Toxicity is a function of solubility. Insoluble compounds as well as the metallic forms often exhibit negligible toxicity. The toxicity of any metal depends on its ligands. In some cases, organometallic forms, such as methylmercury and tetraethyl lead, can be extremely toxic. In other cases, organometallic derivatives are less toxic such as the cobaltocenium cation.
Decontamination for toxic metals is different from organic toxins: because toxic metals are elements, they cannot be destroyed. Toxic metals may be made insoluble or collected, possibly by the aid of chelating agents, or through bioremediation. Alternatively, they can be diluted into a sufficiently large reservoir, such as the sea, because immediate toxicity is a function of concentration rather than amount.
Toxic metals can bioaccumulate in the body and in the food chain. Therefore, a common characteristic of toxic metals is the chronic nature of their toxicity. This is particularly notable with radioactive heavy metals such as radium, which imitates calcium to the point of being incorporated into human bone, although similar health implications are found in lead or mercury poisoning. The exceptions to this are barium and aluminium, which can be removed efficiently by the kidneys.
Lead poisoning can cause a variety of symptoms and signs which vary depending on the individual and the duration of lead exposure. Symptoms are nonspecific and may be subtle, and someone with elevated lead levels may have no symptoms. Symptoms usually develop over weeks to months as lead builds up in the body during a chronic exposure, but acute symptoms from brief, intense exposures also occur.
Symptoms from exposure to organic lead, which is probably more toxic than inorganic lead due to its lipid solubility, occur rapidly. Poisoning by organic lead compounds has symptoms predominantly in the central nervous system, such as insomnia, delirium, cognitive deficits, tremor, hallucinations, and convulsions.
Symptoms may be different in adults and children; the main symptoms in adults are headache, abdominal pain, memory loss, kidney failure, male reproductive problems, and weakness, pain, or tingling in the extremities.
Early symptoms of lead poisoning in adults are commonly nonspecific and include depression, loss of appetite, intermittent abdominal pain, nausea, diarrhea, constipation, and muscle pain. Other early signs in adults include malaise, fatigue, decreased libido, and problems with sleep. An unusual taste in the mouth and personality changes are also early signs.
In adults, symptoms can occur at levels above 40 μg/dL, but are more likely to occur only above 50–60 μg/dL. Symptoms begin to appear in children generally at around 60 μg/dL. However, the lead levels at which symptoms appear vary widely depending on unknown characteristics of each individual. At blood lead levels between 25 and 60 μg/dL, neuropsychiatric effects such as delayed reaction times, irritability, and difficulty concentrating, as well as slowed motor nerve conduction and headache can occur. Anemia may appear at blood lead levels higher than 50 μg/dL. In adults, abdominal colic, involving paroxysms of pain, may appear at blood lead levels greater than 80 μg/dL. Signs that occur in adults at blood lead levels exceeding 100 μg/dL include wrist drop and foot drop, and signs of encephalopathy (a condition characterized by brain swelling), such as those that accompany increased pressure within the skull, delirium, coma, seizures, and headache. In children, signs of encephalopathy such as bizarre behavior, discoordination, and apathy occur at lead levels exceeding 70 μg/dL. For both adults and children, it is rare to be asymptomatic if blood lead levels exceed 100 μg/dL.
Acute beryllium poisoning is acute chemical pneumonia resulting from the toxic effect of beryllium in its elemental form or in various chemical compounds, and is distinct from berylliosis (also called chronic beryllium disease). After occupational safety procedures were put into place following the realization that the metal caused berylliosis around 1950, acute beryllium poisoning became extremely rare.
Arsenic poisoning is a medical condition that occurs due to elevated levels of arsenic in the body. If exposure occurs over a brief period of time symptoms may include vomiting, abdominal pain, encephalopathy, and watery diarrhea that contains blood. Long-term exposure can result in thickening of the skin, darker skin, abdominal pain, diarrhea, heart disease, numbness, and cancer.
The most common reason for long-term exposure is contaminated drinking water. Groundwater most often becomes contaminated naturally; however, contamination may also occur from mining or agriculture. Recommended levels in water are less than 10–50 µg/l (10–50 parts per billion). Other routes of exposure include toxic waste sites and traditional medicines. Most cases of poisoning are accidental. Arsenic acts by changing the functioning of around 200 enzymes. Diagnosis is by testing the urine, blood, or hair.
Prevention is by using water that does not contain high levels of arsenic. This may be achieved by the use of special filters or using rainwater. There is not good evidence to support specific treatments for long-term poisoning. For acute poisonings treating dehydration is important. Dimercaptosuccinic acid (DMSA) or dimercaptopropane sulfonate (DMPS) may be used while dimercaprol (BAL) is not recommended. Hemodialysis may also be used.
Through drinking water, more than 200 million people globally are exposed to higher than safe levels of arsenic. The areas most affected are Bangladesh and West Bengal. Acute poisoning is uncommon. The toxicity of arsenic has been described as far back as 1500 BC in the Ebers papyrus.
Cadmium is a naturally occurring toxic heavy metal with common exposure in industrial workplaces, plant soils, and from smoking. Due to its low permissible exposure to humans, overexposure may occur even in situations where trace quantities of cadmium are found. Cadmium is used extensively in electroplating, although the nature of the operation does not generally lead to overexposure. Cadmium is also found in some industrial paints and may represent a hazard when sprayed. Operations involving removal of cadmium paints by scraping or blasting may pose a significant hazard. Cadmium is also present in the manufacturing of some types of batteries. Exposures to cadmium are addressed in specific standards for the general industry, shipyard employment, construction industry, and the agricultural industry.
Classically, "lead poisoning" or "lead intoxication" has been defined as exposure to high levels of lead typically associated with severe health effects. Poisoning is a pattern of symptoms that occur with toxic effects from mid to high levels of exposure; toxicity is a wider spectrum of effects, including subclinical ones (those that do not cause symptoms). However, professionals often use "lead poisoning" and "lead toxicity" interchangeably, and official sources do not always restrict the use of "lead poisoning" to refer only to symptomatic effects of lead.
The amount of lead in the blood and tissues, as well as the time course of exposure, determine toxicity.
Lead poisoning may be acute (from intense exposure of short duration) or chronic (from repeat low-level exposure over a prolonged period), but the latter is much more common.
Diagnosis and treatment of lead exposure are based on blood lead level (the amount of lead in the blood), measured in micrograms of lead per deciliter of blood (μg/dL). Urine lead levels may be used as well, though less commonly. In cases of chronic exposure lead often sequesters in the highest concentrations first in the bones, then in the kidneys. If a provider is performing a provocative excretion test, or "chelation challenge", a measurement obtained from urine rather than blood is likely to provide a more accurate representation of total lead burden to a skilled interpreter.
The US Centers for Disease Control and Prevention and the World Health Organization state that a blood lead level of 10 μg/dL or above is a cause for concern; however, lead may impair development and have harmful health effects even at lower levels, and there is no known safe exposure level. Authorities such as the American Academy of Pediatrics define lead poisoning as blood lead levels higher than 10 μg/dL.
Lead forms a variety of compounds and exists in the environment in various forms. Features of poisoning differ depending on whether the agent is an organic compound (one that contains carbon), or an inorganic one. Organic lead poisoning is now very rare, because countries across the world have phased out the use of organic lead compounds as gasoline additives, but such compounds are still used in industrial settings. Organic lead compounds, which cross the skin and respiratory tract easily, affect the central nervous system predominantly.
People may be exposed to toxic chemicals or similar dangerous substances from pharmaceutical products, consumer products, the environment, or in the home or at work. Many toxic tort cases arise either from the use of medications, or through exposure at work.
A toxic heavy metal is any relatively dense metal or metalloid that is noted for its potential toxicity, especially in environmental contexts. The term has particular application to cadmium, mercury, lead and arsenic, all of which appear in the World Health Organisation's list of 10 chemicals of major public concern. Other examples include manganese, chromium, cobalt, nickel, copper, zinc, selenium, silver, antimony and thallium.
Heavy metals are found naturally in the earth. They become concentrated as a result of human caused activities and can enter plant, animal, and human tissues via inhalation, diet, and manual handling. Then, they can bind to and interfere with the functioning of vital cellular components. The toxic effects of arsenic, mercury, and lead were known to the ancients, but methodical studies of the toxicity of some heavy metals appear to date from only 1868. In humans, heavy metal poisoning is generally treated by the administration of chelating agents. Some elements otherwise regarded as toxic heavy metals are essential, in small quantities, for human health.
A toxic tort claim is a specific type of personal injury lawsuit in which the plaintiff claims that exposure to a chemical or dangerous substance caused the plaintiff's injury or disease.
Argyria or argyrosis is a condition caused by inappropriate exposure to chemical compounds of the element silver, or to silver dust. The most dramatic symptom of argyria is that the skin turns blue or bluish-grey. It may take the form of "generalized argyria" or "local argyria". Generalized argyria affects large areas over much of the visible surface of the body. Local argyria shows in limited regions of the body, such as patches of skin, parts of the mucous membrane or the conjunctiva.
Acute mercury exposure has given rise to psychotic reactions such as delirium, hallucinations, and suicidal tendency. Occupational exposure has resulted in erethism, with irritability, excitability, excessive shyness, and insomnia as the principal features of a broad-ranging functional disturbance. With continuing exposure, a fine tremor develops, initially involving the hands and later spreading to the eyelids, lips, and tongue, causing violent muscular spasms in the most severe cases. The tremor is reflected in the handwriting which has a characteristic appearance. In milder cases, erethism and tremor regress slowly over a period of years following removal from exposure. Decreased nerve conduction velocity in mercury-exposed workers has been demonstrated. Long-term, low-level exposure has been found to be associated with less pronounced symptoms of erethism, characterized by fatigue, irritability, loss of memory, vivid dreams, and depression (WHO, 1976).
Effects of chronic occupational exposure to mercury, such as that commonly experienced by affected hatters, include mental confusion, emotional disturbances, and muscular weakness. Severe neurological damage and kidney damage can also occur. Neurological effects include Korsakoff's dementia and erethism (the set of neurological symptoms characteristically associated with mercury poisoning). Signs and symptoms can include red fingers, red toes, red cheeks, sweating, loss of hearing, bleeding from the ears and mouth, loss of appendages such as teeth, hair, and nails, lack of coordination, poor memory, shyness, insomnia, nervousness, tremors, and dizziness. A survey of exposed U.S. hatters revealed predominantly neurological symptomatology, including intention tremor. After chronic exposure to the mercury vapours, hatters tended to develop characteristic psychological traits, such as pathological shyness and marked irritability (box). Such manifestations among hatters prompted several popular names for erethism, including "mad hatter disease", "mad hatter syndrome", "hatter's shakes" and "Danbury shakes".
In animals and humans chronic intake of silver products commonly leads to gradual accumulation of silver compounds in various parts of the body. As in photography (where silver is useful because of its sensitivity to light), exposure of pale or colourless silver compounds to sunlight decomposes them to silver metal or silver sulfides. Commonly these products deposit as microscopic particles in the skin, in effect a dark pigment. This condition is known as argyria or argyrosis.
Chronic intake also may lead to silver pigments depositing in other organs exposed to light, particularly the eyes. In the conjunctiva this is not generally harmful, but it also may affect the lens, leading to serious effects.
Localised argyria often results from topical use of substances containing silver, such as some kinds of eye drops. Generalized argyria results from chronically swallowing or inhaling silver compounds, either for home medicines purposes, or as a result of working with silver or silver compounds.
While silver is potentially toxic to humans at high doses, the risk of serious harm from low doses, given over a short term, is slight. Treatment of external infections is considered safe; oral use of colloidal silver is safe for short term administration if the dose is low. Silver is used in some medical appliances because of its anti-microbial nature, which stems from the oligodynamic effect. Chronic ingestion or inhalation of silver preparations (especially colloidal silver) can lead to argyria in the skin and other organs. This is not life-threatening, but is considered by most to be cosmetically undesirable.
The reference dose, published by the United States Environmental Protection Agency in 1991, which represents the estimated daily exposure that is unlikely to incur an appreciable risk of deleterious effects during a lifetime, is 5 µg/(kg·d).
Argyria worsens and builds up as exposure to silver continues, and does not resolve once exposure stops.
Erethism or erethism mercurialis is a neurological disorder which affects the whole central nervous system, as well as a symptom complex derived from mercury poisoning. This is also sometimes known as the mad hatter disease. Historically, this was common among old England felt-hatmakers who used mercury to stabilize the wool in a process called felting, where hair was cut from a pelt of an animal such as a rabbit. The industrial workers were exposed to the mercury vapors, giving rise to the expression “mad as a hatter.” Some believe that the character the Mad Hatter in Lewis Carroll's Alice in Wonderland is an example of someone suffering from erethism, but the origin of this account is unclear. The character was almost certainly based on Theophilus Carter, an eccentric furniture dealer who was well known to Carroll.
Mad hatter disease, or mad hatter syndrome, was an occupational disease among hatmakers, caused by chronic mercury poisoning. It affected those whose felting work involved prolonged exposure to mercury vapors. The neurotoxic effects included tremor and the pathological shyness and irritability characteristic of erethism.
Erethism is due to mercury poisoning. Mercury is an element that is found all over the earth in soil, rocks, and water. People who get erethism are usually exposed to jobs that have something to do with these elements, such as construction. People who work in factory jobs tend to have a higher chance of getting erethism. The problem with mercury is that if humans are exposed to any of the forms of mercury, depending on the amount (dose), route (ingestion, skin contact, inhalation), duration (time) of exposure, it can be toxic. Some elemental and chemical forms of mercury (vapor, methylmercury, inorganic mercury) are more toxic than other forms. The human fetus and medically compromised people (for example, patients with lung or kidney problems) are the most susceptible to the toxic effects of mercury.
It is commonly characterized through behavioral changes such as irritability, low self-confidence, depression, apathy, shyness and timidity, and in some extreme cases with prolonged exposure to mercury vapors, delirium, personality changes and memory loss occur as a result. People with erethism find it difficult to interact socially with others, with behaviors similar to that of a social phobia. Although most of the effects of erethism are neurological, some physical problems arise as well, including a decrease in physical strength, “headaches, general pain, and tremors after exposure to metallic mercury” as well as irregular heartbeat. It has been documented that “the tremor in the hands can be so severe that the victim is unable to hold a glass of water without spilling its contents.”
The primary risk factor for erethism is long-term exposure to mercury vapors and gasses at high levels. One group at risk for mercury poisoning is industrial workers and those exposed to high levels of mercury residing naturally in the environment. Erethism is not as serious an issue as it was back before acceptable working condition regulations were enforced. Preventing mercury levels from getting too high limits the amount available for inhalation.
There is a risk of mercury poisoning in the home in some cases. Exposure to mercury vapor may stem from cultural and religious reasons where mercury is sprinkled on the floor of a home or car, burned in a candle, or mixed with perfume. Due to widespread use and popular concern, the risk of toxicity from dental amalgam has been exhaustively investigated. Many studies have not revealed convincing evidence of toxicity . However, in 2015 research showed that an increased mercury release from dental amalgam restorations after exposure to electromagnetic fields is a potential hazard for hypersensitive people and pregnant women.
Argyria or argyrosis is a condition caused by excessive exposure to chemical compounds of the element silver, or to silver dust. The most dramatic symptom of argyria is that the skin turns purple or purple-grey. It may take the form of "generalized argyria" or "local argyria". Generalized argyria affects large areas over much of the visible surface of the body. Local argyria shows in limited regions of the body, such as patches of skin, parts of the mucous membrane or the conjunctiva.
The terms argyria and argyrosis have long been used interchangeably, with argyria being used more frequently. Argyrosis has been used particularly in referring to argyria of the conjunctiva, but the usage has never been consistent and cannot be relied on except where it has been explicitly specified. The term is from "argyros" silver.
Coal ash, also known as coal combustion residuals (CCRs), is the particulate residue that remains from burning coal. Depending on the chemical composition of the coal burned, this residue may contain toxic substances and pose a health risk to workers in coal-fired power plants.
ICD-9-CM code 985.8 "Toxic effect of other specified metals" includes acute & chronic copper poisoning (or other toxic effect) whether intentional, accidental, industrial etc.
- In addition, it includes poisoning and toxic effects of other metals including tin, selenium nickel, iron, heavy metals, thallium, silver, lithium, cobalt, aluminum and bismuth. Some poisonings, e.g. zinc phosphide, would/could also be included as well as under 989.4 Poisoning due to other pesticides, etc.
- Excluded are toxic effects of mercury, arsenic, manganese, beryllium, antimony, cadmium, and chromium.
The 1971 Iraq poison grain disaster was a mass methylmercury poisoning incident that began in late 1971. Grain treated with a methylmercury fungicide and never intended for human consumption was imported into Iraq as seed grain from Mexico and the United States. Due to a number of factors, including foreign-language labelling and late distribution within the growing cycle, this toxic grain was consumed as food by Iraqi residents in rural areas. People suffered from paresthesia (numbness of skin), ataxia (lack of coordination of muscle movements) and vision loss, symptoms similar to those seen when Minamata disease affected Japan. The recorded death toll was 459 people, but figures at least ten times greater have been suggested. The 1971 poisoning was the largest mercury poisoning disaster when it occurred, with cases peaking in January and February 1972 and stopping by the end of March.
Reports after the disaster recommended tighter regulation, better labelling and handling of mercury-treated grain, and wider involvement of the World Health Organization in monitoring and preventing poisoning incidents. Investigation confirmed the particular danger posed to fetuses and young children.