Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Drowning is most often quick and unspectacular. Its media depictions as a loud, violent struggle have much more in common with distressed non-swimmers, who may well drown but have not yet begun to do so. In particular, an asphyxiating person is seldom able to call for help. The instinctive drowning response covers many signs or behaviors associated with drowning or near-drowning:
- Head low in the water, mouth at water level
- Head tilted back with mouth open
- Eyes glassy and empty, unable to focus
- Eyes open, with fear evident on the face
- Hyperventilating or gasping
- Trying to swim in a particular direction but not making headway
- Trying to roll over on the back to float
- Uncontrollable movement of arms and legs, rarely out of the water.
Frank Pia, a lifeguard and researcher of rescue techniques and drowning, notes that drowning begins at the point a person is unable to keep their mouth above water; inhalation of water takes place at a later stage. Most people demonstrating the instinctive drowning response do not show obvious prior evidence of distress.
There are several terms which were in general use, but are no longer recommended.
Generally, a person who is unable to voluntarily open the eyes, does not have a sleep-wake cycle, is unresponsive in spite of strong tactile (painful) or verbal stimuli, and who generally scores between 3 and 8 on the Glasgow Coma Scale is considered in a coma. Coma may have developed in humans as a response to injury to allow the body to pause bodily actions and heal the most immediate injuries before waking. It therefore could be a compensatory state in which the body's expenditure of energy is not superfluous. The severity and mode of onset of coma depends on the underlying cause. For instance, severe hypoglycemia (low blood sugar) or hypercapnia (increased carbon dioxide levels in the blood) initially cause mild agitation and confusion, but progress to obtundation, stupor, and finally, complete unconsciousness. In contrast, coma resulting from a severe traumatic brain injury or subarachnoid hemorrhage can be instantaneous. The mode of onset may therefore be indicative of the underlying cause.
In the initial assessment of coma, it is common to gauge the level of consciousness by spontaneously exhibited actions, response to vocal stimuli ("Can you hear me?"), and painful stimuli; this is known as the AVPU (alert, vocal stimuli, painful stimuli, unresponsive) scale. More elaborate scales, such as the Glasgow Coma Scale, quantify an individual's reactions such as eye opening, movement and verbal response on a scale; Glasgow Coma Scale (GCS) is an indication of the extent of brain injury varying from 3 (indicating severe brain injury and death) to a maximum of 15 (indicating mild or no brain injury).
In those with deep unconsciousness, there is a risk of asphyxiation as the control over the muscles in the face and throat is diminished. As a result, those presenting to a hospital with coma are typically assessed for this risk ("airway management"). If the risk of asphyxiation is deemed high, doctors may use various devices (such as an oropharyngeal airway, nasopharyngeal airway or endotracheal tube) to safeguard the airway.
Signs and symptoms vary depending on the degree of hypothermia, and may be divided by the three stages of severity. Infants with hypothermia may feel cold when touched, with bright red skin and an unusual lack of energy.
Symptoms of mild hypothermia may be vague, with sympathetic nervous system excitation (shivering, high blood pressure, fast heart rate, fast respiratory rate, and contraction of blood vessels). These are all physiological responses to preserve heat. Increased urine production due to cold, mental confusion, and hepatic dysfunction may also be present. Hyperglycemia may be present, as glucose consumption by cells and insulin secretion both decrease, and tissue sensitivity to insulin may be blunted. Sympathetic activation also releases glucose from the liver. In many cases, however, especially in alcoholic patients, hypoglycemia appears to be a more common presentation. Hypoglycemia is also found in many hypothermic patients, because hypothermia may be a result of hypoglycemia.
Asphyxia or asphyxiation is a condition of severely deficient supply of oxygen to the body that arises from abnormal breathing. An example of asphyxia is choking. Asphyxia causes generalized hypoxia, which affects primarily the tissues and organs. There are many circumstances that can induce asphyxia, all of which are characterized by an inability of an individual to acquire sufficient oxygen through breathing for an extended period of time. Asphyxia can cause coma or death.
In 2015 about 9.8 million cases of unintentional suffocation occurred which resulted in 35,600 deaths. The word asphyxia is from Ancient Greek "without" and , "squeeze" (throb of heart).
Situations that can cause asphyxia include but are not limited to: the constriction or obstruction of airways, such as from asthma, laryngospasm, or simple blockage from the presence of foreign materials; from being in environments where oxygen is not readily accessible: such as underwater, in a low oxygen atmosphere, or in a vacuum; environments where sufficiently oxygenated air is present, but cannot be adequately breathed because of air contamination such as excessive smoke.
Other causes of oxygen deficiency include
but are not limited to:
- Acute respiratory distress syndrome
- Carbon monoxide inhalation, such as that from a car exhaust and the smoke's emission from a lighted cigarette: carbon monoxide has a higher affinity than oxygen to the hemoglobin in the blood's red blood corpuscles, bonding with it tenaciously, and, in the process, displacing oxygen and preventing the blood from transporting oxygen around the body
- Contact with certain chemicals, including pulmonary agents (such as phosgene) and blood agents (such as hydrogen cyanide)
- Drowning
- Drug overdose
- Exposure to extreme low pressure or vacuum to the pattern (see space exposure)
- Hanging, specifically suspension or short drop hanging
- Self-induced hypocapnia by hyperventilation, as in shallow water or deep water blackout and the choking game
- Inert gas asphyxiation
- Congenital central hypoventilation syndrome, or primary alveolar hypoventilation, a disorder of the autonomic nervous system in which a patient must consciously breathe; although it is often said that persons with this disease will die if they fall asleep, this is not usually the case
- Respiratory diseases
- Sleep apnea
- A seizure which stops breathing activity
- Strangling
- Breaking the wind pipe.
- Prolonged exposure to chlorine gas
Inert gas asphyxiation is a form of asphyxiation which results from breathing a physiologically inert gas in the absence of oxygen, or a low amount of oxygen, rather than atmospheric air (which is largely composed of nitrogen and oxygen). Examples of physiologically inert gases, which have caused accidental or deliberate death by this mechanism, are: argon, helium, nitrogen and methane. The term "physiologically inert" is used to indicate a gas which has no toxic or anesthetic properties and does not act upon the heart or hemoglobin. Instead, the gas acts as a simple diluent to reduce oxygen concentration in inspired gas and blood to dangerously low levels, thereby eventually depriving all cells in the body of oxygen.
According to the U.S. Chemical Safety and Hazard Investigation Board, in humans, "breathing an oxygen deficient atmosphere can have serious and immediate effects, including unconsciousness after only one or two breaths. The exposed person has no warning and cannot sense that the oxygen level is too low." In the US, at least 80 people died due to accidental nitrogen asphyxiation between 1992 and 2002. Hazards with inert gases and the risks of asphyxiation are well established.
An occasional cause of accidental death in humans, inert gas asphyxia with gases including helium, nitrogen, methane, and argon, has been used as a suicide method. Inert gas asphyxia has been advocated by proponents of euthanasia, using a gas-retaining plastic hood device colloquially referred to as a suicide bag.
Nitrogen asphyxiation has been suggested by a number of lawmakers and other advocates as a more humane way to carry out capital punishment. In April 2015, the Oklahoma Governor Mary Fallin signed a bill authorizing nitrogen asphyxiation as an alternative execution method in cases where the state's preferred method of lethal injection was not available as an option.
Exsanguination is the process of blood loss, to a degree sufficient to cause death. One does not have to lose all of one's blood to cause death. Depending upon the age, health, and fitness level of the individual, people can die from losing half to two-thirds of their blood; a loss of roughly one-third of the blood volume is considered very serious. Even a single deep cut can warrant suturing and hospitalization, especially if trauma, a vein or artery, or another comorbidity is involved. It is most commonly known as "bleeding to death" or colloquially as "bleeding out". The word itself originated from Latin: "ex" ("out of") and "sanguis" ("blood").
The brain requires approximately 3.3 ml of oxygen per 100 g of brain tissue per minute. Initially the body responds to lowered blood oxygen by redirecting blood to the brain and increasing cerebral blood flow. Blood flow may increase up to twice the normal flow but no more. If the increased blood flow is sufficient to supply the brain's oxygen needs then no symptoms will result.
However, if blood flow cannot be increased or if doubled blood flow does not correct the problem, symptoms of cerebral hypoxia will begin to appear. Mild symptoms include difficulties with complex learning tasks and reductions in short-term memory. If oxygen deprivation continues, cognitive disturbances, and decreased motor control will result. The skin may also appear bluish (cyanosis) and heart rate increases. Continued oxygen deprivation results in fainting, long-term loss of consciousness, coma, seizures, cessation of brain stem reflexes, and brain death.
Objective measurements of the severity of cerebral hypoxia depend on the cause. Blood oxygen saturation may be used for hypoxic hypoxia, but is generally meaningless in other forms of hypoxia. In hypoxic hypoxia 95–100% saturation is considered normal; 91–94% is considered mild and 86–90% moderate. Anything below 86% is considered severe.
It should be noted that cerebral hypoxia refers to oxygen levels in brain tissue, not blood. Blood oxygenation will usually appear normal in cases of hypemic, ischemic, and hystoxic cerebral hypoxia. Even in hypoxic hypoxia blood measures are only an approximate guide; the oxygen level in the brain tissue will depend on how the body deals with the reduced oxygen content of the blood.
Cerebral hypoxia can be caused by any event that severely interferes with the brain's ability to receive or process oxygen. This event may be internal or external to the body. Mild and moderate forms of cerebral hypoxia may be caused by various diseases that interfere with breathing and blood oxygenation. Severe asthma and various sorts of anemia can cause some degree of diffuse cerebral hypoxia. Other causes include status epilepticus, work in nitrogen-rich environments, ascent from a deep-water dive, flying at high altitudes in an unpressurized cabin without supplemental oxygen, and intense exercise at high altitudes prior to acclimatization.
Severe cerebral hypoxia and anoxia is usually caused by traumatic events such as choking, drowning, strangulation, smoke inhalation, drug overdoses, crushing of the trachea, status asthmaticus, and shock. It is also recreationally self-induced in the fainting game and in erotic asphyxiation.
- Transient ischemic attack (TIA), is often referred to as a "mini-stroke". The American Heart Association and American Stroke Association (AHA/ASA) refined the definition of transient ischemic attack. TIA is now defined as a transient episode of neurologic dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute infarction. The symptoms of a TIA can resolve within a few minutes, unlike a stroke. TIAs share the same underlying etiology as strokes; a disruption of cerebral blood flow. TIAs and strokes present with the same symptoms such as contralateral paralysis (opposite side of body from affected brain hemisphere), or sudden weakness or numbness. A TIA may cause sudden dimming or loss of vision, aphasia, slurred speech, and mental confusion. The symptoms of a TIA typically resolve within 24 hours, unlike a stroke. Brain injury may still occur in a TIA lasting only a few minutes. Having a TIA is a risk factor for eventually having a stroke.
- Silent stroke is a stroke which does not have any outward symptoms, and the patient is typically unaware they have suffered a stroke. Despite its lack of identifiable symptoms, a silent stroke still causes brain damage and places the patient at increased risk for a major stroke in the future. In a broad study in 1998, more than 11 million people were estimated to have experienced a stroke in the United States. Approximately 770,000 of these strokes were symptomatic and 11 million were first-ever silent MRI infarcts or hemorrhages. Silent strokes typically cause lesions which are detected via the use of neuroimaging such as fMRI. The risk of silent stroke increases with age but may also affect younger adults. Women appear to be at increased risk for silent stroke, with hypertension and current cigarette smoking being predisposing factors.
Most PVS patients are unresponsive to external stimuli and their conditions are associated with different levels of consciousness. Some level of consciousness means a person can still respond, in varying degrees, to stimulation. A person in a coma, however, cannot. In addition, PVS patients often open their eyes in response to feeding, which has to be done by others; they are capable of swallowing, whereas patients in a coma subsist with their eyes closed (Emmett, 1989).
PVS patients' eyes might be in a relatively fixed position, or track moving objects, or move in a "disconjugate" (i.e., completely unsynchronized) manner. They may experience sleep-wake cycles, or be in a state of chronic wakefulness. They may exhibit some behaviors that can be construed as arising from partial consciousness, such as grinding their teeth, swallowing, smiling, shedding tears, grunting, moaning, or screaming without any apparent external stimulus.
Individuals in PVS are seldom on any life-sustaining equipment other than a feeding tube because the brainstem, the center of vegetative functions (such as heart rate and rhythm, respiration, and gastrointestinal activity) is relatively intact (Emmett, 1989).
Many people emerge spontaneously from a vegetative state within a few weeks. The chances of recovery depend on the extent of injury to the brain and the patient's age – younger patients having a better chance of recovery than older patients. A 1994 report found that of those who were in a vegetative state a month after a trauma, 54% had regained consciousness by a year after the trauma, whereas 28% had died and 18% were still in the vegetative state. But for non-traumatic injuries such as strokes, only 14% had recovered consciousness at one year, 47% had died, and 39% were still vegetative. Patients who were vegetative six months after the initial event were much less likely to have recovered consciousness a year after the event than in the case of those who were simply reported vegetative at one month. A "New Scientist" article from 2000 gives a pair of graphs showing changes of patient status during the first 12 months after head injury and after incidents depriving the brain of oxygen. After a year, the chances that a PVS patient will regain consciousness are very low and most patients who do recover consciousness experience significant disability. The longer a patient is in a PVS, the more severe the resulting disabilities are likely to be. Rehabilitation can contribute to recovery, but many patients never progress to the point of being able to take care of themselves.
There are two dimensions of recovery from a persistent vegetative state: recovery of consciousness and recovery of function. Recovery of consciousness can be verified by reliable evidence of awareness of self and the environment, consistent voluntary behavioral responses to visual and auditory stimuli, and interaction with others. Recovery of function is characterized by communication, the ability to learn and to perform adaptive tasks, mobility, self-care, and participation in recreational or vocational activities. Recovery of consciousness may occur without functional recovery, but functional recovery cannot occur without recovery of consciousness (Ashwal, 1994).
Electrical injury is a physiological reaction caused by electric current passing through the (human) body. Electric shock occurs upon contact of a (human) body part with any source of electricity that causes a sufficient magnitude of current to pass through the victim's flesh, viscera or hair. Physical contact with energized wiring or devices is the most common cause of an electric shock. In cases of exposure to high voltages, such as on a power transmission tower, physical contact with energized wiring or objects may not be necessary to cause electric shock, as the voltage may be sufficient to "jump" the air gap between the electrical device and the victim.
The injury related to electric shock depends on the magnitude of the current. Very small currents may be imperceptible or produce a light tingling sensation. A shock caused by low current that would normally be harmless could startle an individual and cause injury due to suddenly jerking away from the source of electricity, resulting in one striking a stationary object, dropping an object being held or falling. Stronger currents may cause some degree of discomfort or pain, while more intense currents may induce involuntary muscle contractions, preventing the victim from breaking free of the source of electricity. Still larger currents usually result in tissue damage and may trigger fibrillation of the heart or cardiac arrest, any of which may ultimately be fatal. If death results from an electric shock the cause of death is generally referred to as electrocution.
When humans breathe in an asphyxiant gas, such as pure nitrogen, helium, neon, argon, sulfur hexafluoride, methane, or any other physiologically inert gas(es), they exhale carbon dioxide without re-supplying oxygen. Physiologically inert gases (those that have no toxic effect, but merely dilute oxygen) are generally free of odor and taste. As such, the human subject detects little abnormal sensation as the oxygen level falls. This leads to asphyxiation (death from lack of oxygen) without the painful and traumatic feeling of suffocation (the hypercapnic alarm response, which in humans arises mostly from carbon dioxide levels rising), or the side effects of poisoning. In scuba diving rebreather accidents, there is often little sensation but euphoria—however, a slow decrease in oxygen breathing gas content has effects which are quite variable. By contrast, suddenly breathing pure inert gas causes oxygen levels in the blood to fall precipitously, and may lead to unconsciousness in only a few breaths, with no symptoms at all.
Some animal species are better equipped than humans to detect hypoxia, and these species are more uncomfortable in low-oxygen environments that result from inert gas exposure.
Exsanguination is a relatively uncommon cause of death in human beings. Traumatic injury can cause exsanguination if bleeding is not promptly controlled, and is the most common cause of death in military combat. Non-combat causes can include gunshot or stab wounds; motor vehicle crash injuries; suicide by severing arteries, typically those in the wrists; and partial or total limb amputation, such as via accidental contact with a circular or chain saw, or becoming entangled in operating machinery.
Patients can also develop catastrophic internal hemorrhages, such as from a bleeding peptic ulcer, postpartum bleeding or splenic hemorrhage, which can cause exsanguination without any external signs of distress. Another cause of exsanguination in the medical field is that of aneurysms. If a dissecting aortic aneurysm ruptures through the adventitia, massive hemorrhage and exsanguination can result in a matter of minutes.
Blunt force trauma to the liver, kidneys, and spleen can cause severe internal bleeding as well, though the abdominal cavity usually becomes visibly darkened as if bruised. Similarly, trauma to the lungs can cause bleeding out, though without medical attention, blood can fill the lungs causing the effect of drowning, or in the pleura causing suffocation, well before exsanguination would occur. In addition, serious trauma can cause tearing of major blood vessels without external trauma indicative of the damage.
Alcoholics and others with liver disease can also suffer from exsanguination. Thin-walled, normally low pressure dilated veins just below the lower esophageal mucosa called esophageal varices can become enlarged in conditions with portal hypertension. These may begin to bleed, which with the high pressure in the portal system can be fatal. The often causative impaired liver function also reduces the availability of clotting factors (many of which are made in the liver), making any rupture in vessels more likely to cause a fatal loss of blood.
Heating due to resistance can cause extensive and deep burns. Voltage levels of 500 to 1000 volts tend to cause internal burns due to the large energy (which is proportional to the duration multiplied by the square of the voltage divided by resistance) available from the source. Damage due to current is through tissue heating. For most cases of high-energy electrical trauma, the Joule heating in the deeper tissues along the extremity will reach damaging temperatures in a few seconds.
Opisthotonus or opisthotonos, from Greek roots, ὄπισθεν, "opisthen" meaning "behind" and τόνος "tonos" meaning "tension", is a state of severe hyperextension and spasticity in which an individual's head, neck and spinal column enter into a complete "bridging" or "arching" position. This abnormal posturing is an extrapyramidal effect and is caused by spasm of the axial muscles along the spinal column.
Sudden unexpected death in epilepsy (SUDEP) is a fatal complication of epilepsy. It is defined as the sudden and unexpected, non-traumatic and non-drowning death of a person with epilepsy, without a toxicological or anatomical cause of death detected during the post-mortem examination.
While the mechanisms underlying SUDEP are still poorly understood, it is possibly the most common cause of death as a result of complications from epilepsy, accounting for between 7.5 and 17% of all epilepsy-related deaths and 50% of all deaths in refractory epilepsy. The causes of SUDEP seem to be multifactorial and include respiratory, cardiac and cerebral factors, as well as the severity of epilepsy and seizures. Proposed pathophysiological mechanisms include seizure-induced cardiac and respiratory arrests.
SUDEP occurs in about 1 in 1,000 adults and 1 in 4,500 children with epilepsy a year. Rates of death as a result of prolonged seizures (status epilepticus) are not classified as SUDEP.
The symptoms of brain ischemia reflect the anatomical region undergoing blood and oxygen deprivation. Ischemia within the arteries branching from the internal carotid artery may result in symptoms such as blindness in one eye, weakness in one arm or leg, or weakness in one entire side of the body. Ischemia within the arteries branching from the vertebral arteries in the back of the brain may result in symptoms such as dizziness, vertigo, double vision, or weakness on both sides of the body . Other symptoms include difficulty speaking, slurred speech, and the loss of coordination. The symptoms of brain ischemia range from mild to severe. Further, symptoms can last from a few seconds to a few minutes or extended periods of time. If the brain becomes damaged irreversibly and infarction occurs, the symptoms may be permanent.
Similar to cerebral hypoxia, severe or prolonged brain ischemia will result in unconsciousness, brain damage or death, mediated by the ischemic cascade.
Multiple cerebral ischemic events may lead to subcortical ischemic depression, also known as vascular depression. This condition is most commonly seen in elderly depressed patients. Late onset depression is increasingly seen as a distinct sub-type of depression, and can be detected with an MRI.
Global brain ischemia occurs when blood flow to the brain is halted or drastically reduced. This is commonly caused by cardiac arrest. If sufficient circulation is restored within a short period of time, symptoms may be transient. However, if a significant amount of time passes before restoration, brain damage may be permanent. While reperfusion may be essential to protecting as much brain tissue as possible, it may also lead to reperfusion injury. Reperfusion injury is classified as the damage that ensues after restoration of blood supply to ischemic tissue.
It is seen in some cases of severe cerebral palsy and traumatic brain injury or as a result of the severe muscular spasms associated with tetanus. It can be a feature of severe acute hydrocephalus.
Opisthotonus can be produced experimentally in animals by transection of the midbrain (between the superior colliculus and the inferior colliculus), which results in severing all the corticoreticular fibers. Hyperextension occurs due to facilitation of the anterior reticulospinal tract caused by the inactivation of inhibitory corticoreticular fibers, which normally act upon the pons reticular formation. It has been shown to occur naturally only in birds and placental mammals.
Opisthotonus is more pronounced in infants. Opisthotonus in the neonate may be a symptom of meningitis, tetanus, severe kernicterus, or the rare Maple syrup urine disease. This marked extensor tone can cause infants to "rear backwards" and stiffen out as the mother or nurse attempts to hold or feed them. Opisthotonus can be induced by any attempt at movement such as smiling, feeding, vocalization, or by seizure activity. A similar tonic posturing may be seen in Sandifer syndrome. Individuals with opisthotonus are quite challenging to position, especially in wheelchairs and car seats.
Opisthotonus can sometimes be seen in lithium intoxication. It is a rare extrapyramidal side effect of phenothiazines, haloperidol, and metoclopramide.
Opisthotonus with the presence of the risus sardonicus is also a symptom of strychnine poisoning.
Opisthotonus is also described as a potential CNS symptom of heat stroke along with bizarre behavior, hallucinations, decerebrate rigidity, oculogyric crisis and cerebellar dysfunction.
Opisthotonus is seen with drowning victims – called the "Opisthotonic Death Pose". This pose is also common in complete dinosaur skeletal fossils and it has been suggested that this is due to the animal drowning or being immersed in water soon after death.
The central symptom of sleep paralysis is being aware but being unable to move during awakening.
Imagined sounds such as humming, hissing, static, zapping and buzzing noises are reported during sleep paralysis. Other sounds such as voices, whispers and roars are also experienced. These symptoms are usually accompanied by intense emotions: such as fear, and panic. People also have sensations of being dragged out of bed or of flying, numbness, and feelings of electric tingles or vibrations running through their body.
Sleep paralysis may include hallucinations, such as a supernatural creature suffocating or terrifying the individual, accompanied by a feeling of pressure on one's chest and difficulty breathing. Another example of a hallucination involves a menacing shadowy figure entering one's room or lurking outside one's window, while the subject is paralyzed.
The body image distortion (affecting parietal regions and the temporoparietal junction) may result in the sleeper having bodily hallucinations, such as illusory limbs and out-of-body experiences. The content and interpretation of these hallucinations are driven by fear, somatic sensations, REM-induced sexual arousal, and REM mentation which are embedded in the sleeper's cultural narrative.
REM sleep physiology and somatic symptoms coupled with the awareness that one is paralyzed, can generate a variety of psychological symptoms during sleep paralysis, including fear and worry that are aggravated by catastrophic cognitions about the attack. This can activate a fight-flight reaction and panic-like arousal. Consequently, when the person attempts to escape the paralysis, somatic symptoms and arousal are exacerbated, as execution of motor programs in the absence of dampening proprioceptive feedback can lead to heightened sensations of bodily tightness and pressure, and even pain and spasms in limbs.
Sleep paralysis is when, during awakening or falling asleep, one is aware but unable to move. During an episode, one may hear, feel, or see things that are not there. It often results in fear. Episodes generally last less than a couple of minutes. It may occur as a single episode or be recurrent.
The condition may occur in those who are otherwise healthy, those with narcolepsy, or may run in families as a result of specific genetic changes. The condition can be triggered by sleep deprivation, psychological stress, or abnormal sleep cycles. The underlying mechanism is believed to involve a dysfunction in REM sleep. Diagnosis is based on a person's description. Other conditions that can present similarly include narcolepsy, atonic seizure, and hypokalemic periodic paralysis.
Treatment options for sleep paralysis have been poorly studied. People should generally be reassured that the condition is common and not serious. Other efforts that may be tried include sleep hygiene, cognitive behavioral therapy, and antidepressants.
Between 8% and 50% of people experience sleep paralysis at some time. About 5% of people have regular episodes. Males and females are affected equally. Sleep paralysis has been described throughout history. It is believed to have played a role in the creation of stories about alien abduction and other paranormal events.