Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cerebral palsy is defined as "a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain." While movement problems are the central feature of CP, difficulties with thinking, learning, feeling, communication and behavior often co-occur, with 28% having epilepsy, 58% having difficulties with communication, at least 42% having problems with their vision, and 2356% having learning disabilities. Muscle contractions in people with cerebral palsy is commonly thought to arise from overactivation.
Cerebral palsy is characterized by abnormal muscle tone, reflexes, or motor development and coordination. There can be joint and bone deformities and contractures (permanently fixed, tight muscles and joints). The classical symptoms are spasticity, spasms, other involuntary movements (e.g., facial gestures), unsteady gait, problems with balance, or soft tissue findings consisting largely of decreased muscle mass. Scissor walking (where the knees come in and cross) and toe walking (which can contribute to a gait reminiscent of a marionette) are common among people with CP who are able to walk, but taken on the whole, CP symptomatology is very diverse. The effects of cerebral palsy fall on a continuum of motor dysfunction, which may range from slight clumsiness at the mild end of the spectrum to impairments so severe that they render coordinated movement virtually impossible at the other end of the spectrum. Although most people with CP have problems with increased muscle tone, some have normal or low muscle tone. High muscle tone can either be due to spasticity or dystonia.
Babies born with severe CP often have an irregular posture; their bodies may be either very floppy or very stiff. Birth defects, such as spinal curvature, a small jawbone, or a small head sometimes occur along with CP. Symptoms may appear or change as a child gets older. Some babies born with CP do not show obvious signs right away. Classically, CP becomes evident when the baby reaches the developmental stage at 6 to 9 months and is starting to mobilise, where preferential use of limbs, asymmetry, or gross motor developmental delay is seen.
Drooling is common among children with cerebral palsy, which can have a variety of impacts including social rejection, impaired speaking, damage to clothing and books, and mouth infections. It can additionally cause choking.
An average of 55.5% of people with cerebral palsy experience lower urinary tract symptoms, more commonly excessive storage issues than voiding issues. Those with voiding issues and pelvic floor overactivity can deteriorate as adults and experience upper urinary tract dysfunction.
Children with CP may also have sensory processing issues.`
Various degrees of intensity and locations of epilepsy are associated with malformations of cortical development. Researchers suggest that approximately 40% of children diagnosed with drug-resistant epilepsy have some degree of cortical malformation.
Lissencephaly (to which pachygyria is most closely linked) is associated with severe mental retardation, epilepsy, and motor disability. Two characteristics of lissencephaly include its absence of convolutions (agyria) and decreased presence of convolutions (pachygyria). The types of seizures associated with lissencephaly include:
- persisting spasms
- focal seizures
- tonic seizures
- atypical seizures
- atonic seizures
Other possible symptoms of lissencephaly include telecanthus, estropia, hypertelorism, varying levels of mental retardation, cerebellar hypoplasia, corpus callosum aplasia, and decreased muscle tone and tendon reflexes. Over 90% of children affected with lissencephaly have seizures.
Patients with subcortical band heterotopia (another disorder associated with pachygyria) typically have milder symptoms and their cognitive function is closely linked to the thickness of the subcortical band and the degree of pachygyria present.
Megalencephaly-capillary (MCAP) is one of the two major syndromes of megalencephaly. Typically, MCAP and MPPH can be distinguished by somatic features. MCAP includes many characteristics that are observed at birth including: cutaneous vascular malformations, especially capillary malformations of the face and cutis marmorata, polydactyly, connective tissue dysplasia, and focal or segmental body overgrowth. Furthermore, MCAP can occasionally be linked with asymmetric brain overgrowth (hemimegalencephaly) as well as segmental overgrowth of the body (hemihypertrophy).
Signs and symptoms of CBPS typically appear in infancy or at birth, but can appear later in childhood. These include facial diplegia (paralysis on both sides), facial muscle spasms, pseudobulbar palsy, dysarthria (difficulty speaking), difficulty chewing, dysphagia (difficulty swallowing), epilepsy, and intellectual disability. Epileptic seizures in individuals with CBPS are different between individuals and can vary between episodes.
Symptoms depend on the type of HSP inherited. The main feature of the disease is progressive spasticity in the lower limbs due to pyramidal tract dysfunction. This also results in brisk reflexes, extensor plantar reflexes, muscle weakness, and variable bladder disturbances. Furthermore, among the core symptoms of HSP are also included abnormal gait and difficulty in walking, decreased vibratory sense at the ankles, and paresthesia.
Initial symptoms are typically difficulty with balance, stubbing the toe or stumbling. Symptoms of HSP may begin at any age, from infancy to older than 60 years. If symptoms begin during the teenage years or later, then spastic gait disturbance usually progresses over many years. Canes, walkers, and wheelchairs may eventually be required, although some people never require assistance devices.
More specifically, patients with the autosomal dominant pure form of HSP reveal normal facial and extraocular movement. Although jaw jerk may be brisk in older subjects, there is no speech disturbance or difficulty of swallowing. Upper extremity muscle tone and strength are normal. In the lower extremities, muscle tone is increased at the hamstrings, quadriceps and ankles. Weakness is most notable at the iliopsoas, tibialis anterior, and to a lesser extent, hamstring muscles.
In the complex form of the disorder, additional symptoms are present. These include: peripheral neuropathy, amyotrophy, ataxia, mental retardation, ichthyosis, epilepsy, optic neuropathy, dementia, deafness, or problems with speech, swallowing or breathing.
Anita Harding classified the HSP in a pure and complicated form. Pure HSP presents with spasticity in the lower limbs, associated with neurogenic bladder disturbance as well as lack of vibration sensitivity (pallhypesthesia). On the other hand, HSP is classified as complex when lower limb spasticity is combined with any additional neurological symptom.
This classification is subjective and patients with complex HSPs are sometimes diagnosed as having cerebellar ataxia with spasticity, mental retardation (with spasticity), or leukodystrophy. Some of the genes listed below have been described in other diseases than HSP before. Therefore, some key genes overlap with other disease groups.
Diplegia of the legs consists of paralysis of both legs. There are 3 levels of severity. Mild diplegia means the person can usually walk but might walk a little differently, can usually play and run to a limited extent. Moderate diplegia means the person can usually walk but with a slight bend in the knees. They usually can’t run and have to use the handrails to go up and down steps. People with severe diplegia usually need crutches, a walker, or a wheelchair to be able to get around.
Children with diplegia in the legs have a delayed growth in their leg muscles which causes the muscles to be short. This then causes the joints to become stiff and the range of motion to decrease as the child grows. “For the majority of children with diplegia, growth and development are not a problem. Children with diplegia are eventually able to walk, just normally later; they generally attend regular schools and become independently functioning adults.”
ADCP is often characterized by slow, uncontrolled movements of the extremities and trunk. Small, rapid, random and repetitive, uncontrolled movements known as chorea may also occur. Involuntary movements often increase during periods of emotional stress or excitement and disappear when the patient is sleeping or distracted. Patients experience difficulty in maintaining posture and balance when sitting, standing, and walking due to these involuntary movements and fluctuations in muscle tone. Coordinated activities such as reaching and grasping may also be challenging. Muscles of the face and tongue can be affected, causing involuntary facial grimaces, expressions, and drooling. Speech and language disorders, known as dysarthria, are common in athetoid CP patients. In addition, ADCP patients may have trouble eating. Hearing loss is a common co-occurring condition, and visual disabilities can be associated with Athetoid Cerebral Palsy. Squinting and uncontrollable eye movements may be initial signs and symptoms. Children with these disabilities rely heavily on visual stimulation, especially those who are also affected by sensory deafness.
Cognitive impairment occur in 30% of cases.
Epilepsy occur in 25% of cases.
Spastic quadriplegia can be detected by the abnormal development of motor skills in children. Symptoms can present themselves as early as three months but are generally seen before the child reaches two years of age. Some warning signs include: a child of more than two months who has stiff legs that scissor and is unable to control his or her head, and a child of more than twelve months who has not developed the ability to crawl or stand.
Spastic quadriplegia also presents a range of symptoms that affect the musculature. Many experience contractures, which are defined as joints that cannot be stretched or moved. Clonus is another symptom that is characterized by alternating, rapid muscle contraction and relaxation. This presents itself as tremors and scissoring of the limbs. Distonia, or lasting muscle contractions and tightness, is also often experienced by those affected by spastic quadriplegia. These involuntary muscle contractions may affect the development of structural muscle around the hip and lead to hip dysplasia and dislocation, making it difficult to sit. The combination of these symptoms often makes it difficult for the patients to walk as well. Although the arms and legs of patients are often stiff, the neck is usually limp due to the lack of voluntary muscle control. Some adults have issues with sexual organs such as the ones that control the sphincter (anus) as well and bladder control. These can sometimes be treated with training and stimulation even if the problems have presented for years, some issues can be corrected in many cases with nutrition modification in 90 percent of cases, especially B12. Stimulation of the muscles involved can treat some forms of nerve damage, depending on what the issue is. Sexual issues can be difficult for those with this, and sexual acts and stimulation can correct most of the sexual issues.
Pain is common and may result from the inherent deficits associated with the condition, along with the numerous procedures children typically face. Pain is associated with tight or shortened muscles, abnormal posture, stiff joints, unsuitable orthosis, etc. There is also a high likelihood of chronic sleep disorders secondary to both physical and environmental factors. Children with cerebral palsy have significantly higher rates of sleep disturbance than typically developing children. Babies with cerebral palsy who have stiffness issues might cry more and be harder to put to sleep than non-disabled babies, or "floppy" babies might be lethargic. Chronic pain is under-recognized in children with cerebral palsy, even though 3 out of 4 children with cerebral palsy experience pain.
Premature infants often exhibit visual impairment and motor deficits in eye control immediately after birth. However, the correction of these deficits occurs "in a predictable pattern" in healthy premature infants, and infants have vision comparable to full-term infants by 36 to 40 weeks after conception. Infants with PVL often exhibit decreased abilities to maintain a steady gaze on a fixed object and create coordinated eye movements. Additionally, children with PVL often exhibit nystagmus, strabismus, and refractive error.
Hemimegalencephaly is an extremely rare form of macrocephaly and is characterized by uneven development of brain hemispheres (one-half of brain is larger than other). The syndrome can be presented by itself or in association with phakomatosis or hemigigantism. Additionally, hemimegalencephaly will frequently cause severe epilepsy, focal neuro-logical deficits, macrocrania, and mild to severe mental retardation.
Occurrence of seizures is often reported in children with PVL. In an Israel-based study of infants born between 1995 and 2002, seizures occurred in 102 of 541, or 18.7%, of PVL patients. Seizures are typically seen in more severe cases of PVL, affecting patients with greater amounts of lesions and those born at lower gestational ages and birth weights.
Facial paralysis is usually caused by traumatic, infectious, neurological, metabolic, toxic, vascular, and idiopathic conditions. While over 50% of the cases of unilateral facial paralysis are caused by idiopathic conditions, less than 20% of bilateral cases are idiopathic. The most common infectious cause of facial diplegia is Lyme disease.
In the past, HSP has been classified as early onset beginning in early childhood or later onset in adulthood. The age of onsets has two points of maximum at age 2 and around age 40. New findings propose that an earlier onset leads to a longer disease duration without loss of ambulation or the need for the use of a wheelchair. This was also described earlier, that later onset forms evolve more rapidly.
People with the spastic/spasticity type of CP are hypertonic—i.e., they present with very stiff and tight muscle groups, far greater than typical humans—and have what is essentially a neuromuscular mobility impairment (rather than hypotonia or paralysis) which stems from an upper motor neuron lesion in the brain. The corticospinal tract or the motor cortex may be secondarily affected.
Spastic muscles are continuously contracting, or "tight", because the corresponding nerves permanently over-fire the command to tighten. This is caused by their inability to properly absorb GABA, or gamma amino butyric acid. The tightness, in addition to restricting movement, also acts as an overwhelming opposing force to neighbouring muscles and joints, eventually leaving the entire skeleton deformed compared to normal skeletal, bone, and joint structure in people without spasticity. Abnormal postures are usually associated with the antigravity muscles, which are extensors in the leg and the flexors in the arm. Deformities of joints develop which may become joint contractures, or "fixed contractures", with time.
Changes in spasticity and corresponding postures may also occur with other brain activity, such as excitement, fear or anxiety, or even pain, which increase muscle tension.
A person with spastic CP will commonly show, in addition to higher muscle tone, persistent primitive reflexes, greater stretch reflexes, plantar reflex, and ankle clonus.
A third of people with cerebral palsy have seizures - this is most common in spastic CP.
Individuals with spastic diplegia are very tight and stiff and must work very hard to successfully resist and "push through" the extra tightness they perpetually experience. Other than this, however, these individuals are almost always normal in every significant clinical sense. When they are younger, spastic diplegic individuals typically undergo gait analysis so that their clinicians can determine the best assistive devices for them, if any are necessary, such as a walker or crutches. The main difference between spastic diplegia and a normal gait pattern is its signature "scissor gait"—a style that some able-bodied people might tend to confuse with the effects of drunkenness, multiple sclerosis, or another nerve disease. The degree of spasticity in spastic diplegia (and, for that matter, other types of spastic CP) varies widely from person to person. No two people with spastic diplegia are exactly alike. Balance problems and/or stiffness in gait can range from barely noticeable all the way to misalignments so pronounced that the person needs crutches (typically forearm crutches/lofstrand crutches) or a cane / walking stick to assist in ambulation. Less often, spasticity is severe enough to compel the person to use a wheelchair. In general, however, lower-extremity spasticity in spastic diplegia is rarely so great as to totally prevent ambulation—most people with the condition can walk, and can do so with at least a basic amount of overall stability. Regardless, it should be noted that from case to case, steeply varying degrees of imbalance, potential tripping over uneven terrain while walking, or needing to hold on to various surfaces or walls in certain circumstances to keep upright, are typically ever-present potential issues and are much more common occurrences amongst those with spastic diplegia than among those with a normal or near-normal gait pattern. Among some of the people with spastic diplegia who choose to be ambulatory on either an exclusive or predominant basis, one of the seemingly common lifestyle choices is for the person to ambulate within his or her home without an assistive device, and then to use the assistive device, if any, once outdoors. Others may use no assistive device in any "indoor" situation at all, while always using one when outdoors. Above the hips, persons with spastic diplegia typically retain normal or near-normal muscle tone and range of motion, though some lesser spasticity may also affect the upper body, such as the trunk and arms, depending on the severity of the condition in the individual (the spasticity condition affecting the whole body equally, rather than just the legs, is spastic quadriplegia, a slightly different classification). In addition, because leg tightness often leads to instability in ambulation, extra muscle tension usually develops in the shoulders, chest, and arms due to compensatory stabilisation movements, regardless of the fact that the upper body itself is not directly affected by the condition.
BFPP is a cobblestone-like cortical malformation of the brain. Disruptions of cerebral cortical development due to abnormal neuronal migration and positioning usually lead to cortical disorders, which includes cobblestone lissencephaly. Cobblestone lissencephaly is typically seen in three different human congenital muscular dystrophy syndromes: Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and muscle-eye-brain disease. In cobblestone lissencephaly, the brain surface actually has a bumpy contour caused by the presence of collections of misplaced neurons and glial cells that have migrated beyond the normal surface boundaries of the brain. Sometimes regions populated by these misplaced cells have caused a radiologic misdiagnosis of polymicrogyria. However, the presence of other abnormalities in these cobblestone lissencephaly syndromes, including ocular anomalies, congenital muscular dystrophy, ventriculomegaly, and cerebellar dysplasia, usually distinguishes these disorders from polymicrogyria. There are no anatomopathologic studies that have characterized the pattern of cortical laminar alterations in patients with GPR56 gene mutations, but it has been suggested that the imaging characteristics of BFPP, including myelination defects and cerebellar cortical dysplasia, are reminiscent of those of the so-called cobblestone malformations (muscle-eye-brain disease and Fukuyama congenital muscular dystrophy) that are also associated with N-glycosylation defects in the developing brain.
Lissencephaly ("smooth brain") is the extreme form of pachygyria. In lissencephaly, few or no sulci are seen on the cortical surface, resulting in a broad, smooth appearance to the entire brain. Lissencephaly can be radiologically confused with polymicrogyria, particularly with low-resolution imaging, but the smoothness and lack of irregularity in the gray-white junction, along with markedly increased cortical thickness, distinguishes lissencephaly.
GPR56 mutation also can cause a severe encelphalopathy which is associated with electro clinical features of the Lennox-Gastaut syndrome. Lennox-Gastaut syndrome can be cryptogenic or symptomatic, but the symptomatic forms have been associated with multiple etiologies and abnormal cortical development. BFPP caused by GPR56 mutations is a representation of a malformation of cortical development that causes Lennox-Gastaut Syndrome.
Polymicrogyria usually gets misdiagnose with pacygyria so therefore it needs to be distinguished from pachygyria. Pachygyria is a distinct brain malformation in which the surface folds are excessively broad and sparse. Pachygyria and polymicrogyria may look similar on low-resolution neuroimaging such as CT because the cortical thickness can appear to be increased and the gyri can appear to be broad and smooth in both conditions. This is why higher resolution neuroimaging are needed such as an MRI.
Different imaging modalities are commonly used for diagnosis. While computed tomography (CT) provides higher spatial resolution imaging of the brain, cerebral cortex malformations are more easily visualized "in vivo" and classified using magnetic resonance imaging (MRI) which provides higher contrast imaging and better delineation of white and gray matter.
Diffuse pachygyria (a mild form of lissencephaly) can be seen on an MRI as thickened cerebral cortices with few and large gyri and incomplete development of the Sylvian fissures.
- severe epilepsy
- reduced longevity
- varying degrees of mental retardation
- intractable epilepsy
- spasticity
Cognitive ability correlates with the thickness of any subcortical band present and the degree of pachygyria.
The diagnosis of PMG is merely descriptive and is not a disease in itself, nor does it describe the underlying cause of the brain malformation.
Polymicrogyria may be just one piece of a syndrome of developmental abnormalities, because children born with it may suffer from a wide spectrum of other problems, including global developmental disabilities, mild to severe mental retardation, motor dysfunctions including speech and swallowing problems, respiratory problems, and seizures. Though it is difficult to make a predictable prognosis for children with the diagnosis of PMG, there are some generalized clinical findings according to the areas of the brain that are affected.
- Bilateral frontal polymicrogyria (BFP) – Cognitive and motor delay, spastic quadriparesis, epilepsy
- Bilateral frontoparietal polymicrogyria (BFPP) – Severe cognitive and motor delay, seizures, dysconjugate gaze, cerebellar dysfunction
- Bilateral perisylvian polymicrogyria (BPP) – Pseudobulbar signs, cognitive impairment, epilepsy, some with arthrogryposis or lower motor neuron disease
- Bilateral parasagittal parieto-occipital polymicrogyria (BPPP) – Partial seizures, some with mental retardation
- Bilateral generalized polymicrogyria (BGP) – Cognitive and motor delay of variable severity, seizures
At birth, there is no sign that a child will develop symptoms of aspartylglucosaminuria. Typically, signs and symptoms become apparent between two and four years of age and become progressively worse as the individual ages. The following signs and symptoms may appear:
- Individuals are more prone to respiratory infections
- Development of scoliosis
- Seizures or difficulty with movement
- Skin and joints may become loose
- Facial features change progressively; this may include:
- Progression of developmental and mental disabilities, including:
- An intellectual peak occurs in the mid-teens and allows a plateau for the disease. Once an individual hits the age of 25-30 the decrease begins again, including:
(Children are physically uncoordinated, but remain able to play sports and do everyday activities until they reach adulthood.)
- During the first year of life inguinal and umbilical hernias are common.
- Less severe symptoms include:
- People with aspartylglucosaminuria may have lower than average height, because they tend to go through puberty earlier.
- Epilepsy may develop in adulthood.
- Finnish studies have shown that life expectancy is shorter than average.
Athetoid cerebral palsy or dyskinetic cerebral palsy (sometimes abbreviated ADCP) is a type of cerebral palsy primarily associated with damage, like other forms of CP, to the basal ganglia in the form of lesions that occur during brain development due to bilirubin encephalopathy and hypoxic-ischemic brain injury. Unlike spastic or ataxic cerebral palsies, ADCP is characterized by both hypertonia and hypotonia, due to the affected individual's inability to control muscle tone. Clinical diagnosis of ADCP typically occurs within 18 months of birth and is primarily based upon motor function and neuroimaging techniques. While there are no cures for ADCP, some drug therapies as well as speech, occupational therapy, and physical therapy have shown capacity for treating the symptoms.
Classification of cerebral palsy can be based on severity, topographic distribution, or motor function. Severity is typically assessed via the Gross Motor Function Classification System (GMFCS) or the International Classification of Functioning, Disability and Health (described further below). Classification based on motor characteristics classifies CP as occurring from damage to either the corticospinal pathway or extrapyramidal regions. Athetoid dyskinetic cerebral palsy is a non-spastic, extrapyramidal form of cerebral palsy (spastic cerebral palsy, in contrast, results from damage to the brain’s corticospinal pathways). Non-spastic cerebral palsy is divided into two groups, ataxic and dyskinetic. Dyskinetic cerebral palsy is separated further into two different groups; choreoathetoid and dystonic. Choreo-athetotic CP is characterized by involuntary movements most predominantly found in the face and extremities. Dystonic ADCP is characterized by slow, strong contractions, which may occur locally or encompass the whole body.
Clinically, physicians have also classified cerebral palsy according to the topographic distribution of muscle spasticity. This method classifies children as diplegic, (bilateral involvement with leg involvement greater than arm involvement), hemiplegic (unilateral involvement), or quadriplegic (bilateral involvement with arm involvement equal to or greater than leg involvement).
BPP is similar to the other types of polymicrogyria in that it is usually symmetrical, but BPP can vary among patients. BPP is characterized by its location; the cerebral cortex deep in the sylvian fissures is thickened and abnormally infolded, as well as the sylvian fissures extending more posteriorly up to the parietal lobes and more vertically oriented. BPP has been classified into a grading system consisting of four different grades that describe that variations in severity:
Grade 1: Perisylvian polymicrogyria extends to either one or both poles
Grade 2: Perisylvian polymicrogyria extends past the perisylvian region, but not to either of the polesGrade 3: Perisylvian polymicrogyria is contained in the perisylvian region onlyGrade 4: Perisylvian polymicrogyria is contained in the posterior perisylvian region onlyThe grades move from most severe (Grade 1) to least severe (Grade 4). Although BFPP was the first form of polymicrogyria to be discovered, BPP was the first form to be described and is also the most common form of polymicrogyria. The clinical characterizations of BPP "include pseudobulbar palsy with diplegia of the facial, pharyngeal and masticory muscles (facio-pharyngo-glosso-masticatory paresis), pyramidal signs, and seizures." These can result in drooling, feeding issues, restricted tongue movement, and dysarthria. Disorders in language development have also been associated with BPP, but the extent of language disorder depends on the severity of cortical damage. Patients who suffer from BPP can also have pyramidal signs that vary in severity, and can be either unilateral or bilateral.
Weber's syndrome (also known as superior alternating hemiplegia) has a few distinct symptoms: contralateral hemiparesis of limb and facial muscle accompanied by weakness in one or more muscles that control eye movement on the same side. Another symptom that appears is the loss of eye movement due to damage to the oculomotor nerve fibers. The upper and lower extremities have increased weakness.
Congenital bilateral perisylvian syndrome (CBPS) is a rare neurological disease characterized by paralysis of certain facial muscles and epileptic seizures.
There are different tests or methods used to determine GPR56 expression or visuals of the brain to analyze the specific sections that are affected. These tests for example, using animals such as mice, RNAi, Behavioral assay, Electron microscopy, CT scan, or MRI demonstrate different results that concludes an affected BFPP patient. MRI's reveal either irregularity to the cortical surface suggestive of multiple small folds or an irregular, scalloped appearance of the gray matter-white matter junction.
Neuroimaging The diagnosis of polymicrogyria is typically made by magnetic resonance imaging (MRI) since computed tomography (CT) and other imaging methods generally do not have high enough resolution or adequate contrast to identify the small folds that define the condition. The cerebral cortex often appears abnormally thick as well because the multiple small gyri are fused, infolded, and superimposed in appearance.
Neuropathology Gross neuropathologic examination reveals a pattern of complex convolutions to the cerebral cortex, with miniature gyri fused and superimposed together, often resulting in an irregular brain surface. The cortical ribbon can appear excessively thick as a result of the infolding and fusion of multiple small gyri.
Microscopic examination demonstrates that the cerebral cortex is in fact abnormally thin and has abnormal lamination; typically the cortex is unlayered or has four layers, in contrast to the normal six layers. The most superficial layers between adjacent small gyri appear fused, with the pia (layer of the meninges) bridging across multiple gyri. Prenatal diagnosis for BFPP is also available for pregnancies at risk if the GPR56 mutations have been identified in an affected family member.