Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Epidemic dropsy is a form of edema of extremities due to poisoning by "Argemone mexicana" (Mexican prickly poppy).
Epidemic dropsy is a clinical state resulting from use of edible oils adulterated with "Argemone mexicana" seed oil.
Sanguinarine and dihydrosanguinarine are two major toxic alkaloids of argemone oil, which cause widespread capillary dilatation, proliferation and increased capillary permeability. When mustard oil is adulterated deliberately (as in most cases) or accidentally with argemone oil, proteinuria (specifically loss of albumin) occurs, with a resultant edema as would occur in nephrotic syndrome.
Other major symptoms are pitting edema of extremities, headache, nausea, loose bowels, erythema, glaucoma and breathlessness.
Leakage of the protein-rich plasma component into the extracellular compartment leads to the formation of edema. The haemodynamic consequences of this vascular dilatation and permeability lead to a state of relative hypovolemia with a constant stimulus for fluid and salt conservation by the kidneys. Illness begins with gastroenteric symptoms followed by cutaneous erythema and pigmentation. Respiratory symptoms such as cough, shortness of breath and orthopnoea, progressing to frank right-sided congestive cardiac failure, are seen.
Mild to moderate anaemia, hypoproteinaemia, mild to moderate renal azotemia, retinal haemorrhages, and glaucoma are common manifestations. There is no specific therapy. Removal of the adulterated oil and symptomatic treatment of congestive cardiac failure and respiratory symptoms, along with administration of antioxidants and multivitamins, remain the mainstay of treatment.
Epidemic dropsy occurs as an epidemic in places where use of mustard oil, (from the seeds of Brassica "juncea" commonly known as Indian mustard ) as cooking medium is common.
Nitric acid test and paper chromatography test are used in the detection of argemone oil.Paper chromatography test is the most sensitive test.
Dropsy is a disease in fish caused by the buildup of fluid inside the body cavity or tissues. As a symptom rather than a disease, it can indicate a number of underlying diseases, including bacterial infections, parasitic infections, or liver dysfunction.
Because dropsy is a symptom of an illness, its cause may or may not be contagious. However, it is standard practice to quarantine sick fish to prevent spreading the underlying cause to the other fish in the tank community.
The condition has been found in cats, fish, herons, terrapins and Nile crocodiles, piscivores such as otters, cormorants, Pel's fishing-owls and fish eagles. The disorder is also regularly found in captive-bred animals fed on high fish diets, such as mink, pigs and poultry. It shows as a rubber-like hardening of fat reserves which then become unavailable for normal metabolism, resulting in extreme pain, loss of mobility and death.
Diseases can have a variety of causes, including bacterial infections from an external source such as "Pseudomonas fluorescens" (causing fin rot and fish dropsy), fungal infections (Saprolegnia), mould infections (Oomycete and "Saprolegnia"), parasitic disorders ("Gyrodactylus salaris", "Ichthyophthirius multifiliis", Cryptocaryon, Oodinium causing velvet disease, "Brooklynella hostilis", head and lateral line erosion, Glugea, "Ceratomyxa shasta", "Kudoa thyrsites", "Tetracapsuloides bryosalmonae", "Ceratomyxa shasta" leeches, nematode, Trematoda, Platyhelminthes and fish louse), viral disorders, metabolic disorders, inappropriate water conditions (insufficient aeration, pH, water hardness, temperature and ammonia poisoning) and malnutrition.
External bacterial infections may cause spots or streaks on the body which appear red or orange Dropsy (bloating) is also a sign of a bacterial infection. "False fungal infections" look like fungus but is actually a bacterial infection known as Columnaris. These symptoms may include a white or gray film on the body.
Pansteatitis, or yellow fat disease, is a physiological condition in which the body fat becomes inflamed.
Ornamental fish kept in aquariums are susceptible to numerous diseases. Due to their generally small size and the low cost of replacing diseased or dead fish, the cost of testing and treating diseases is often seen as more trouble than the value of the fish.
Due to the artificially limited volume of water and high concentration of fish in most aquarium tanks, communicable diseases often affect most or all fish in a tank. An improper nitrogen cycle, inappropriate aquarium plants and potentially harmful freshwater invertebrates can directly harm or add to the stresses on ornamental fish in a tank. Despite this, many diseases in captive fish can be avoided or prevented through proper water conditions and a well-adjusted ecosystem within the tank.
The earliest known report of "bakanae" is from 1828; it was first described scientifically in 1898 by Japanese researcher Shotaro Hori, who showed that the causative agent was fungal.
The fungus affects rice crops in Asia, Africa, and North America. In epidemic cases yield losses may reach up to 20% or more. A 2003 publication from the International Rice Research Institute estimated that outbreaks of bakanae caused crop losses that were 20% to 50% in Japan, 15% in Thailand and 3.7% in India.
Alcoholism and self-medication are also common features in these populations. NSAIDs self-prescription is particularly widespread, possibly due to frequent agricultural work posture-related pains, and dysuria is commonly treated with aminoglycosides, often not related to urinary tract infections but perhaps associated with dehydration itself.
The cause of MeN is unclear, but it is certainly not explained by conventional causes such as diabetes mellitus or hypertension. Many risk factors have been proposed but to date, the causes of the disease remain uncertain and controversial.
Flacherie (literally: "flaccidness") is a disease of silkworms, caused by silkworms eating infected or contaminated mulberry leaves. Flacherie infected silkworms look weak and can die from this disease. Silkworm larvae that are about to die from Flacherie are a dark brown.
There are two kinds of flacherie: essentially, infectious (viral) flacherie and noninfectious ("bouffee") flacherie. Both are technically a lethal diarrhea.
Bouffée flacherie is caused by heat waves ("bouffée" means "sudden heat spell" in French).
Viral flacherie is ultimately caused by infection with "Bombyx mori" infectious flacherie virus (BmIFV, Iflaviridae), "Bombyx mori" densovirus (BmDNV, Parvoviridae) or "Bombyx mori" cypovirus 1 (BmCPV-1, Reoviridae). This either alone or in combination with bacterial infection destroys the gut tissue. Bacterial pathogens contributing to infectious flaccherie are "Serratia marcescens", and species of "Streptococcus" and "Staphylococcus" in the form known as thatte roga.
Louis Pasteur, who began his studies on silkworm diseases in 1865, was the first one able to recognize that mortality due to viral flacherie was caused by infection. (Priority, however, was claimed by Antoine Béchamp.) Richard Gordon described the discovery: "The French silk industry was meanwhile plummeting from a 130 million to an 8 million francs annual income, because the silkworms had all caught "pébrine," black pepper disease…He [Pasteur] went south from Paris to Alais, and rewarded them by discovering the silkworm epidemic to be inflicted by some sort of living microbe…Pasteur threw in another disease, "flâcherie," silkworm diarrhoea. The cures for both were culling the insects which showed the peppery spots — the peasants bottled the silkworm moths in brandy, for display to the experts — and rigorous hygiene of the mulberry leaf."
The 1951 Pont-Saint-Esprit mass poisoning, also known as Le Pain Maudit, occurred on 15 August 1951, in the small town of Pont-Saint-Esprit in southern France. More than 250 people were involved, including 50 persons interned in asylums and resulted in 7 deaths. A foodborne illness was suspected, and among these it was originally believed to be a case of "cursed bread" ("pain maudit").
Most academic sources accept ergot poisoning as the cause of the epidemic, while a few theorize other causes such as poisoning by mercury, mycotoxins, or nitrogen trichloride.
Haverhill fever (or epidemic arthritic erythema) is a form of "rat-bite fever" caused by the bacterium "Streptobacillus moniliformis", an organism common in rats and mice. Symptoms begin to appear two to ten days after a rat bite injury. The illness resembles a severe influenza, with a moderate fever (38-40 °C, or 101-104 °F), chills, joint pain, and a diffuse red rash, located mostly on the hands and feet. The causative organism can be isolated by blood culture, and penicillin is the most common treatment. Treatment is usually quite successful, although the body can clear the infection by itself in most cases. Complications are rare, but can include endocarditis and meningitis.
Despite its name, it can present without being bitten by a rat.
The disease was recognized from an outbreak which occurred in Haverhill, Massachusetts in January, 1926. The organism "S. moniliformis" was isolated from the patients. Epidemiology implicated infection via consumption of milk from one particular dairy.
The classic symptoms of pellagra are diarrhea, dermatitis, dementia, and death ("the four Ds").
A more comprehensive list of symptoms includes:
- High sensitivity to sunlight
- Aggression
- Dermatitis, alopecia (hair loss), edema (swelling)
- Smooth, beefy red glossitis (tongue inflammation)
- Red skin lesions
- Insomnia
- Weakness
- Mental confusion
- Ataxia (lack of coordination), paralysis of extremities, peripheral neuritis (nerve damage)
- Diarrhea
- Dilated cardiomyopathy (enlarged, weakened heart)
- Eventually dementia
J. Frostig and Tom Spies (acc. to Cleary and Cleary) described more specific psychological symptoms of pellagra as:
- Psychosensory disturbances (impressions as being painful, annoying bright lights, odors intolerance causing nausea and vomiting, dizziness after sudden movements)
- Psychomotor disturbances (restlessness, tense and a desire to quarrel, increased preparedness for motor action)
- Emotional disturbances
Despite clinical symptoms, blood level of tryptophan or urinary metabolites such as 2-pyridone/N-methylniacinamide ratio <2 or NAD/NADP ratio in red blood cells could be used to diagnose pellagra. Diagnosis could be confirmed after rapid improvements in the symptoms in patients using high doses of niacin (250–500 mg/day) or niacin enriched food.
Symptoms are different for every person depending on the type of rat-bite fever with which the person is infected. Both spirillary and streptobacillary rat-bite fever have a few individual symptoms, although most symptoms are shared. Streptobacillosis is most commonly found in the United States and spirillary rat-bite fever is generally diagnosed in patients in Africa. Rat-bite symptoms are visually seen in most cases and include inflammation around the open sore. A rash can also spread around the area and appear red or purple. Other symptoms associated with streptobacillary rat-bite fever include chills, fever, vomiting, headaches, and muscle aches. Joints can also become painfully swollen and pain can be experienced in the back. Skin irritations such as ulcers or inflammation can develop on the hands and feet. Wounds heal slowly, so symptoms possibly come and go over the course of a few months.
Symptoms associated with spirillary rat-bite fever include issues with the lymph nodes, which often swell or become inflamed as a reaction to the infection. The most common locations of lymph node swelling are in the neck, groin, and underarm. Symptoms generally appear within 2 to 10 days of exposure to the infected animal. It begins with the fever and progresses to the rash on the hands and feet within 2 to 4 days. Rash appears all over the body with this form, but rarely causes joint pain.
The streptobacillosis form of rat-bite fever is known by the alternative names Haverhill fever and epidemic arthritic erythema. It is a severe disease caused by "Streptobacillus moniliformis", transmitted either by rat bite or ingestion of contaminated products (Haverhill fever). After an incubation period of 2–10 days, Haverhill fever begins with high prostrating fevers, rigors (shivering), headache, and polyarthralgia (joint pain). Soon, an exanthem (widespread rash) appears, either maculopapular (flat red with bumps) or petechial (red or purple spots) and arthritis of large joints can be seen. The organism can be cultivated in blood or articular fluid. The disease can be fatal if untreated in 20% of cases due to malignant endocarditis, meningoencephalitis, or septic shock. Treatment is with penicillin, tetracycline, or doxycycline.
The symptoms and signs, as described by physician John Caius and others, were as follows: the disease began very suddenly with a sense of apprehension, followed by cold shivers (sometimes very violent), giddiness, headache, and severe pains in the neck, shoulders and limbs, with great exhaustion. After the cold stage, which might last from half an hour to three hours, the hot and sweating stage followed. The characteristic sweat broke out suddenly without any obvious cause. Accompanying the sweat, or after, was a sense of heat, headache, delirium, rapid pulse, and intense thirst. Palpitation and pain in the heart were frequent symptoms. No skin eruptions were noted by observers including Caius. In the final stages, there was either general exhaustion and collapse, or an irresistible urge to sleep, which Caius thought to be fatal if the patient was permitted to give way to it. One attack did not offer immunity, and some people suffered several bouts before dying. The disease tended to occur in summer and early autumn.
Pellagra is a disease caused by a lack of the vitamin niacin (vitamin B). Symptoms include inflamed skin, diarrhea, dementia, and sores in the mouth. Areas of the skin exposed to either sunlight or friction are typically affected first. Over time affected skin may become darker, stiff, begin to peel, or bleed.
There are two main types of pellagra, primary and secondary. Primary pellagra is due to a diet that does not contain enough niacin and tryptophan. Secondary pellagra is due to a poor ability to use the niacin within the diet. This can occur as a result of alcoholism, long term diarrhea, carcinoid syndrome, Hartnup disease, and a number of medications such as isoniazid. Diagnosis is typically based on symptoms and may be assisted by urine testing.
Treatment is with either niacin or nicotinamide supplementation. Improvements typically begin within a couple of days. General improvements in diet are also frequently recommended. Decreasing sun exposure via sunscreen and proper clothing is important while the skin heals. Without treatment death may occur. It occurs most commonly in the developing world, specifically sub-Saharan Africa.
In epizoology, an epizootic (from Greek: "epi-" upon + "zoon" animal) is a disease event in a nonhuman animal population, analogous to an epidemic in humans. An epizootic may be: restricted to a specific locale (an "outbreak"), general (an "epizootic") or widespread ("panzootic"). High population density is a major contributing factor to epizootics. Aquaculture is an industry sometimes plagued by disease because of the large number of fish confined to a small area.
Defining an epizootic can be subjective; it is based upon the number of new cases in a given animal population, during a given period, and must be judged to be a rate that substantially exceeds what is expected based on recent experience ("i.e." a sharp elevation in the incidence rate). Because it is based on what is "expected" or thought normal, a few cases of a very rare disease (like a TSE outbreak in a cervid population) might be classified as an "epizootic", while many cases of a common disease (like lymphocystis in esocids) would not.
Common diseases that occur at a constant but relatively high rate in the population are said to be "enzootic" ("cf." the epidemiological meaning of "endemic" for human diseases). An example of an enzootic disease would be the influenza virus in some bird populations or, at a lower incidence, the Type IVb strain of VHS in certain Atlantic fish populations.
An example of an epizootic would be the 1990 outbreak of Newcastle disease virus in double-crested cormorant colonies on the Great Lakes that resulted in the death of some 10,000 birds.
Zymotic disease was a 19th-century medical term for acute infectious diseases, especially "chief fevers and contagious diseases (e.g. typhus and typhoid fevers, smallpox, scarlet fever, measles, erysipelas, cholera, whooping-cough, diphtheria, &c.)".
Zyme or microzyme was the name of the organism presumed to be the cause of the disease.
As originally employed by Dr W. Farr, of the British Registrar-General's department, the term included the diseases which were "epidemic, endemic and contagious," and were regarded as owing their origin to the presence of a morbific principle in the system, acting in a manner analogous to, although not identical with, the process of fermentation.
In the late 19th century, Antoine Béchamp proposed that tiny organisms he termed "microzymas", and not cells, are the fundamental building block of life. Bechamp claimed these microzymas are present in all things—animal, vegetable, and mineral—whether living or dead . Microzymas are what coalesce to form blood clots and bacteria. Depending upon the condition of the host, microzymas assume various forms. In a diseased body, the microzymas become pathological bacteria and viruses. In a healthy body, microzymas form healthy cells. When a plant or animal dies, the microzymas live on. His ideas did not gain acceptance.
The word "zymotic" comes from the Greek word ζυμοῦν "zumoûn" which means "to ferment". It was in British official use from 1839. This term was used extensively in the English Bills of Mortality as a cause of death from 1842. Robert Newstead (1859–1947) used this term in a 1908 publication in the "Annals of Tropical Medicine and Parasitology", to describe the contribution of house flies ("Musca domestica") towards the spread of infectious diseases. However, by the early 1900s, bacteriology "displaced the old fermentation theory", and so the term became obsolete.
In her "Diagram of the causes of mortality in the army in the East", Florence Nightingale depicts The blue wedges measured from the centre of the circle represent area for area the deaths from Preventible or Mitigable Zymotic diseases ; the red wedges measured from the centre the deaths from wounds, & the black wedges measured from the centre the deaths from all other causes.
The symptoms and signs of Bright's disease were first described in 1827 by the English physician Richard Bright, after whom the disease was named. In his "Reports of Medical Cases", he described 25 cases of dropsy (edema) which he attributed to kidney disease. Symptoms and signs included: inflammation of serous membranes, hemorrhages, apoplexy, convulsions, blindness and coma. Many of these cases were found to have albumin in their urine (detected by the spoon and candle-heat coagulation), and showed striking morbid changes of the kidneys at autopsy. The triad of dropsy, albumin in the urine and kidney disease came to be regarded as characteristic of Bright's disease. Subsequent work by Bright and others indicated an association with cardiac hypertrophy, which was attributed by Bright to stimulation of the heart. Subsequent work by Mahomed showed that a rise in blood pressure could precede the appearance of albumin in the urine, and the rise in blood pressure and increased resistance to flow was believed to explain the cardiac hypertrophy.
It is now known that Bright's disease is due to a wide range of diverse kidney diseases; thus, the term "Bright's disease" is retained strictly for historical application. The disease was diagnosed frequently in patients with diabetes; at least some of these cases would probably correspond to a modern diagnosis of diabetic nephropathy.
In adult swine, the disease is very mild and mortalities are rare. The primary signs are a watery diarrhoea and mild systemic signs such as pyrexia, anorexia and lethargy.
Diagnosis is via immunofluorescence or immunohistochemistry, and ELISA can detect antigen or antibodies.
In the 1890s, an epizootic of the rinderpest virus struck Africa, considered to be "the most devastating epidemic to hit southern Africa in the late nineteenth century". It killed more than 5.2 million cattle south of the Zambezi, as well as domestic oxen, sheep, and goats, and wild populations of buffalo, giraffe, and wildebeest. This led to starvation resulting in the death of an estimated third of the human population of Ethiopia and two-thirds of the Maasai people of Tanzania.
Sweating sickness, also known as "English sweating sickness" or "English sweate" (), was a mysterious and highly contagious disease that struck England, and later continental Europe, in a series of epidemics beginning in 1485. The last outbreak occurred in 1551, after which the disease apparently vanished. The onset of symptoms was dramatic and sudden, death often occurring within hours. Although its cause remains unknown, it has been suggested that an unknown species of hantavirus was responsible for the outbreak.