Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The lesions that appear in teeth affected with MIH can present as opacities that vary from white to yellow-brown. They are usually asymmetrical in appearance, with a sharp demarcation that distinguishes between normal and affected enamel. The lesions usually do not involve the cervical third of affected teeth.
Opacities due to MIH can be quite visible especially on anterior teeth which could present as a problem aesthetically. Patients frequently claim aesthetic discomfort when anterior teeth are involved. The discoloured appearance of the anterior teeth could also have negative effects on a child’s psychological development and self-esteem.
The two main classification systems are described below. Others include the tooth surface fluorosis index (Horowitz et al. 1984), which combines Deans index and the TF index; and the fluorosis risk index (Pendrys 1990), which is intended to define the time at which fluoride exposure occurs, and relates fluorosis risk with tooth development stage.
Dental fluorosis (also termed mottled enamel) is an extremely common disorder, characterized by hypomineralization of tooth enamel caused by ingestion of excessive fluoride during enamel formation.
It appears as a range of visual changes in enamel causing degrees of intrinsic tooth discoloration, and, in some cases, physical damage to the teeth. The severity of the condition is dependent on the dose, duration, and age of the individual during the exposure. The "very mild" (and most common) form of fluorosis, is characterized by small, opaque, "paper" white areas scattered irregularly over the tooth, covering less than 25% of the tooth surface. In the "mild" form of the disease, these mottled patches can involve up to half of the surface area of the teeth. When fluorosis is moderate, all of the surfaces of the teeth are mottled and teeth may be ground down and brown stains frequently "disfigure" the teeth. Severe fluorosis is characterized by brown discoloration and discrete or confluent pitting; brown stains are widespread and teeth often present a corroded-looking appearance.
People with fluorosis are relatively resistant to dental caries (tooth decay caused by bacteria), although they may be of cosmetic concern. In moderate to severe fluorosis, teeth are physically damaged.
A person experiencing caries may not be aware of the disease. The earliest sign of a new carious lesion is the appearance of a chalky white spot on the surface of the tooth, indicating an area of demineralization of enamel. This is referred to as a white spot lesion, an incipient carious lesion or a "microcavity". As the lesion continues to demineralize, it can turn brown but will eventually turn into a cavitation ("cavity"). Before the cavity forms, the process is reversible, but once a cavity forms, the lost tooth structure cannot be regenerated.
A lesion that appears dark brown and shiny suggests dental caries were once present but the demineralization process has stopped, leaving a stain. Active decay is lighter in color and dull in appearance.
As the enamel and dentin are destroyed, the cavity becomes more noticeable. The affected areas of the tooth change color and become soft to the touch. Once the decay passes through enamel, the dentinal tubules, which have passages to the nerve of the tooth, become exposed, resulting in pain that can be transient, temporarily worsening with exposure to heat, cold, or sweet foods and drinks. A tooth weakened by extensive internal decay can sometimes suddenly fracture under normal chewing forces. When the decay has progressed enough to allow the bacteria to overwhelm the pulp tissue in the center of the tooth, a toothache can result and the pain will become more constant. Death of the pulp tissue and infection are common consequences. The tooth will no longer be sensitive to hot or cold, but can be very tender to pressure.
Dental caries can also cause bad breath and foul tastes. In highly progressed cases, an infection can spread from the tooth to the surrounding soft tissues. Complications such as cavernous sinus thrombosis and Ludwig angina can be life-threatening.
Tooth discoloration (also termed tooth staining) is abnormal tooth color, hue or translucency. External discoloration is accumulation of stains on the tooth surface. Internal discoloration is due to absorption of pigment particles into tooth structure. Sometimes there are several different co-existent factors responsible for discoloration.
Acid erosion often coexists with abrasion and attrition. Abrasion is most often caused by brushing teeth too hard.
Any frothing or swishing acidic drinks around the mouth increases the risk of acid erosion.
If Turner's hypoplasia is found on a canine or a premolar, the most likely cause is an infection that was present when the primary (baby) tooth was still in the mouth. Most likely, the primary tooth was heavily decayed and an area of inflamed tissues around the root of the tooth (called a periapical inflammation), affecting the development of the permanent tooth. The tooth most likely affected by this cause is the canine tooth. The appearance of the abnormality will depend on the severity and longevity of the infection.
If Turner's hypoplasia is found in the front (anterior) area of the mouth, the most likely cause is a traumatic injury to a primary tooth. The traumatized tooth, which is usually a maxillary central incisor, is pushed into the developing tooth underneath it and consequently affects the formation of enamel. Because of the location of the permanent tooth's developing tooth bud in relation to the primary tooth, the most likely affected area on the permanent tooth is the facial surface (the side closer to the lips or cheek). White or yellow discoloration may accompany Turner's hypoplasia. Enamel hypoplasia may also be present.
Turner's hypoplasia usually affects the tooth enamel if the trauma occurs prior to the third year of life. Injuries occurring after this time are less likely to cause enamel defects since the enamel is already calcified.
The same type of injury is also associated with the dilaceration of a tooth.
Clinical signs of TRs are often minimal since the discomfort can be minor. However, some authors have described discomfort while chewing, anorexia, dehydration, weight loss, and tooth fracture. The lower third premolar is the most commonly affected tooth.
Early Childhood Caries (ECC), formerly known as nursing bottle caries, baby bottle tooth decay, night bottle mouth and night bottle caries, is a disease that affects teeth in children aged between birth and 71 months. ECC is characterized by the presence of 1 or more decayed (noncavitated or cavitated lesions), missing (due to caries), or filled tooth surfaces in any primary tooth. ECC has been shown to be a very common, transmissible bacterial infection, usually passed from the primary caregiver to the child. The main bacteria responsible for dental caries is Streptococcus mutans (S. Mutans) and Lactobacillus. There is also evidence that supports that those who are in lower socioeconomic populations are at greater risk of developing ECC.
Attrition occurs as a result of opposing tooth surfaces contacting. The contact can affect cuspal, incisal and proximal surface areas.
Indications of attrition can include:
- Loss of tooth anatomy: This results in loss of tooth characteristics including rounding or sharpening of incisal edges, loss of cusps and fracturing of teeth. Enamel of molar teeth may appear thin and flat. When in occlusion the teeth may appear the same height which is particularly apparent for anterior teeth.
- Sensitivity or pain: Attrition may be entirely asymptomatic, or there may be dentin hypersensitivity secondary to loss of the enamel layer, or tenderness of the periodontal ligament caused by occlusal trauma.
- Tooth discolouration: A yellow appearance of the tooth surface may be due to the enamel being worn away, exposing the darker yellower dentin layer underneath.
- Altered occlusion due to decreasing vertical height, or occlusal vertical dimension.
- Compromised periodontal support can result in tooth mobility and drifting of teeth
- Loss in posterior occlusal stability
- Mechanical failure of restorations
Gum recession is generally not an acute condition. In most cases, receding of gums is a progressive condition that occurs gradually over the years. This is one reason that it is common over the age of 40. Because the changes in the condition of the gums from one day to another are minimal, patients get used to the gums' appearance and tend not to notice the recession visually. Receding gums may remain unnoticed until the condition starts to cause symptoms.
The following signs and symptoms may indicate gum recession:
- Tooth mobility
- Dentin hypersensitivity (over-sensitive teeth) - short, sharp pain is triggered by hot, cold, sweet, sour, or spicy food and drink. If the cementum covering the root is not protected anymore by the gums, it is easily abraded exposing the dentin tubules to external stimuli.
- Teeth may also appear longer than normal (a larger part of the crown is visible if gums are receding)
- The roots of the tooth are exposed and visible
- The tooth feels notched at the gum line
- Change in the tooth’s color (due to the color difference between enamel and cementum)
- Spaces between teeth seem to grow (the space is the same, but it seems larger because the gums do not fill it any more)
- Cavities below the gum line
If the gum recession is caused by gingivitis, the following symptoms may also be present:
- Puffy, red, or swollen (inflamed) gums
- Gum bleeding while brushing or flossing
- Bad breath (halitosis)
In some cases, it is the treatment of gingivitis that reveals a gum recession problem, that was previously masked by the gums swelling.
Dental trauma may result in discolorations. Following luxation injuries red discoloration may develop almost instantly. This is due to severance of the venous microcirculation to a tooth, while the arteries continue to supply blood to the pulp. The blood is then decomposed gradually and a blue-brown discoloration develops.
Teeth may turn grey following trauma-induced pulp necrosis (death of the pulp). This discoloration typically develops weeks or months after the injury and is caused by incorporation of pigments released during the breakdown of the pulpal tissue and blood into the dentin.
Yellow discoloration may occur following pulp canal obliteration, i.e., the sealing up of the pulp. Trauma to a developing adult tooth (e.g., intrusion of a baby tooth into the bone) may affect the enamel layer of the adult tooth. This becomes apparent when the adult tooth erupts into the mouth.
Enamel infractions are microcracks seen within the dental enamel of a tooth. They are commonly the result of dental trauma to the brittle enamel, which remains adherent to the underlying dentine. They can be seen more clearly when transillumination is used.
Enamel infractions are found more often in older teeth, as the accumulated trauma is greatest.
Enamel infractions can also be found as a result of iatrogenic damage inadvertently caused by instrumentation during dental treatments.
There are many signs of dental erosion, including changes in appearance and sensitivity. One of the physical changes can be the color of teeth. There are two different colors teeth may turn if dental erosion is occurring, the first being a change of color that usually happens on the cutting edge of the central incisors. This causes the cutting edge of the tooth to become transparent. A second sign is if the tooth has a yellowish tint. This occurs because the white enamel has eroded away to reveal the yellowish dentin. A change in shape of the teeth is also a sign of dental erosion. Teeth will begin to appear with a broad rounded concavity, and the gaps between teeth will become larger. There can be evidence of wear on surfaces of teeth not expected to be in contact with one another. If dental erosion occurs in children, a loss of enamel surface characteristics can occur. Amalgam restorations in the mouth may be clean and non-tarnished. Fillings may also appear to be rising out of the tooth, the appearance being caused when the tooth is eroded away leaving only the filling. The teeth may form divots on the chewing surfaces when dental erosion is occurring. This mainly happens on the first, second, and third molars. One of the most severe signs of dental erosion is cracking, where teeth begin to crack off and become coarse. Other signs include pain when eating hot, cold, or sweet foods. This pain is due to the enamel having been eroded away, exposing the sensitive dentin.
Early childhood caries (ECC) is a multi-factorial disease, referring to various risk factors that inter-relate to increase risk of developing the disease. These risk factors include but not limited to, cariogenic bacteria, diet practices and socioeconomic factors. Normally after 6 months, deciduous teeth begin to erupt means, they are susceptible to tooth decay or dental caries. In some unfortunate cases, infants and young children have experienced severe tooth decay called ECC. This can result in the child experiencing severe pain, extensive dental restorations or extractions. The good news is that ECC is preventable, however, still remains a large burden particularly towards health care expenditure.
It can be caused by any of the following:
- Nutritional factors.
- Some diseases (such as undiagnosed and untreated celiac disease, chicken pox, congenital syphilis).
- Hypocalcemia.
- Fluoride ingestion (dental fluorosis).
- Birth injury.
- Preterm birth.
- Infection.
- Trauma from a deciduous tooth.
Tooth decay, also known as dental caries or cavities, is a breakdown of teeth due to acids made by bacteria. The cavities may be a number of different colors from yellow to black. Symptoms may include pain and difficulty with eating. Complications may include inflammation of the tissue around the tooth, tooth loss, and infection or abscess formation.
The cause of caries is acid from bacteria dissolving the hard tissues of the teeth (enamel, dentin and cementum). The acid is produced from food debris or sugar on the tooth surface. Simple sugars in food are these bacteria's primary energy source and thus a diet high in simple sugar is a risk factor. If mineral breakdown is greater than build up from sources such as saliva, caries results. Risk factors include conditions that result in less saliva such as: diabetes mellitus, Sjogren's syndrome and some medications. Medications that decrease saliva production include antihistamines and antidepressants. Caries is also associated with poverty, poor cleaning of the mouth, and receding gums resulting in exposure of the roots of the teeth.
Prevention of dental caries includes regular cleaning of the teeth, a diet low in sugar, and small amounts of fluoride. Brushing the teeth twice per day and flossing between the teeth once a day is recommended by many. Fluoride may be from water, salt or toothpaste among other sources. Treating a mother's dental caries may decrease the risk in her children by decreasing the numbers of certain bacteria. Screening can result in earlier detection. Depending on the extent of destruction, various treatments can be used to restore the tooth to proper function or the tooth may be removed. There is no known method to grow back large amounts of tooth. The availability of treatment is often poor in the developing world. Paracetamol (acetaminophen) or ibuprofen may be taken for pain.
Worldwide, approximately 2.3 billion people (32% of the population) have dental caries in their permanent teeth. The World Health Organization estimates that nearly all adults have dental caries at some point in time. In baby teeth it affects about 620 million people or 9% of the population. They have become more common in both children and adults in recent years. The disease is most common in the developed world due to greater simple sugar consumption and less common in the developing world. Caries is Latin for "rottenness".
Various classifications have been proposed to classify gingival recession, Miller’s classification system being the one that is most widely followed. Many cases which are encountered in daily clinical practice cannot be classified according to the criteria of the present classification systems. Kumar & Masamatti's classification system gives a comprehensive depiction of recession defect that can be used to include cases that cannot be classified according to present classifications. A separate classification system for palatal recessions (PR) has been given. A new comprehensive classification system classifies recession on the basis of the position of interdental papilla and buccal/lingual/palatal recessions. Kumar & Masamatti's classification system tries to overcome the limitations of Miller's classification.
In dentistry, calculus or tartar is a form of hardened dental plaque. It is caused by precipitation of minerals from saliva and gingival crevicular fluid (GCF) in plaque on the teeth. This process of precipitation kills the bacterial cells within dental plaque, but the rough and hardened surface that is formed provides an ideal surface for further plaque formation. This leads to calculus buildup, which compromises the health of the gingiva (gums). Calculus can form both along the gumline, where it is referred to as supragingival ("above the gum"), and within the narrow sulcus that exists between the teeth and the gingiva, where it is referred to as subgingival ("below the gum").
Calculus formation is associated with a number of clinical manifestations, including bad breath, receding gums and chronically inflamed gingiva. Brushing and flossing can remove plaque from which calculus forms; however, once formed, it is too hard and firmly attached to be removed with a toothbrush. Calculus buildup can be removed with ultrasonic tools or dental hand instruments (such as a periodontal scaler).
Feline Tooth Resorption (TR) is a syndrome in cats characterized by resorption of the tooth by odontoclasts, cells similar to osteoclasts. TR has also been called "feline odontoclastic resorption lesion" (FORL), neck lesion, cervical neck lesion, cervical line erosion, feline subgingival resorptive lesion, feline caries, or feline cavity. It is one of the most common diseases of domestic cats, affecting up to two-thirds. TRs have been seen more recently in the history of feline medicine due to the advancing ages of cats, but 800-year-old cat skeletons have shown evidence of this disease. Purebred cats, especially Siamese and Persians, may be more susceptible.
TRs clinically appear as erosions of the surface of the tooth at the gingival border. They are often covered with calculus or gingival tissue. It is a progressive disease, usually starting with loss of cementum and dentin and leading to penetration of the pulp cavity. Resorption continues up the dentinal tubules into the tooth crown. The enamel is also resorbed or undermined to the point of tooth fracture. Resorbed cementum and dentin is replaced with bone-like tissue.
Talon Cusp will show physical signs of the irregular dental formation of the teeth and cause other symptoms of the disease that could possibly lead to dental problems in the future depending on severity of the deformity. Most commonly, the extra cusp is located on the lingual surface, giving a three-pronged appearance which has been described as an eagle talon. Rarely however the extra cusp may be situated on the facial surface, or there may be extra cusps on both lingual and facial surfaces. There may be a deep groove between the talon cusp and the rest of the tooth. The extra cusp typically contains pulp tissue. When viewing talon cusp from the occlusal, the projection will appear "x-shaped" as well as appears conical and mimicking the shape of an "eagle's talon".
Symptoms of talon cusp include:
- Interference with occlusion or bite
- Irritation of soft tissues and tongue
- Accidental cusp fracture
- Susceptible to dental caries
Mulberry molars are a dental condition usually associated with congenital syphilis, characterized by multiple rounded rudimentary enamel cusps on the permanent first molars. Mulberry molars are physically defective permanent molars. The deformity is caused by congenital syphilis. This type of abnormality is characterized by dwarfed molars with cusps covered with globular enamel growths. These teeth are functional but can be cosmetically fixed with crowns, bridges, or implants.
Just above the gum line, the mulberry molar looks normal. A deformity becomes apparent towards the cusp or top grinding surface of the tooth. Here, the size of the mulberry molar is diminished in all aspects, creating a stumpy version of a conventional molar. The cause of the molar atrophy is thought to be enamel hypoplasia, or a deficiency in tooth enamel. The underlying dentin and pulp of the tooth is normal, but the enamel covering or molar sheath is thin and deformed, creating a smaller version of a typical tooth.
The grinding surface of a mulberry molar is also corrupted. Normally, the grinding surface of a molar has a pit and is surrounded by a circular ridge at the top of the tooth, which is used for grinding. The cusp deformity of the mulberry molar is characterized by an extremely shallow or completely absent pit. Instead, the pit area is filled with globular structures bunched together all along the top surface of the cusp. This type of deformity is also thought to be caused by enamel hypoplasia. Mulberry molars are typically functional and do not need treatment. If the deformity is severe or the person is bothered by the teeth, there are several options. The teeth can be covered with a permanent cast crown, stainless steel crown, or the molars can be removed and an implant or bridge can be put in place of the mulberry molar.
A mulberry molar is caused by congenital syphilis, which is passed from the mother to the child in the uterus through the placenta. Since this particular symptom of congenital syphilis manifests later in childhood with the eruption of the permanent molars, it is a late stage marker for the disease. Hutchinson’s teeth, marked by dwarfed teeth and deformed cusps that are spaced abnormally far apart, are another dental deformity caused by congenital syphilis. Mulberry molars and Hutchinson’s teeth will often occur together. Pregnant women with syphilis should tell their doctors about the condition and be treated for it during pregnancy, otherwise the baby should be screened for the disease after birth and treated with penicillin if necessary.
Dental attrition is a type of tooth wear caused by tooth-to-tooth contact, resulting in loss of tooth tissue, usually starting at the incisal or occlusal surfaces. Tooth wear is a physiological process and is commonly seen as a normal part of aging. Advanced and excessive wear and tooth surface loss can be defined as pathological in nature, requiring intervention by a dental practitioner. The pathological wear of the tooth surface can be caused by bruxism, which is clenching and grinding of the teeth. If the attrition is severe, the enamel can be completely worn away leaving underlying dentin exposed, resulting in an increased risk of dental caries and dentin hypersensitivity. It is best to identify pathological attrition at an early stage to prevent unnecessary loss of tooth structure as enamel does not regenerate.
Abrasion is a pathological, non-carious tooth loss that most commonly affects the premolars and canines. Abrasion frequently presents at the cemento-enamel junction and can be caused by many contributing factors, all with the ability to affect the tooth surface in varying degrees.
Sources of abrasion may arise from oral hygiene habits such as toothbrushes, toothpicks, floss, and dental appliance or may arise from other habits such as nail biting, chewing tobacco or another object. Abrasion can also occur from the type of dentifrice being utilized as some have more abrasive qualities such as whitening toothpastes.
The appearance may vary depending on the aetiology of abrasion, however most commonly presents in a V-shaped caused by excessive lateral pressure whilst tooth-brushing. The surface is shiny rather than carious, and sometimes the ridge is deep enough to see the pulp chamber within the tooth itself.
In order for successful treatment of abrasion to occur, the aetiology first needs to be identified and ceased, e.g. overzealous brushing. Once this has occurred subsequent treatment may involve the changes in oral hygiene or toothpaste, application of fluoride to reduce sensitivity or the placement of a restoration to aid in reducing the progression of further tooth loss.