Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most common symptom of pulmonary edema is difficulty breathing, but may include other symptoms such as coughing up blood (classically seen as pink, frothy sputum), excessive sweating, anxiety, and pale skin. Shortness of breath can manifest as orthopnea (inability to lie down flat due to breathlessness) and/or paroxysmal nocturnal dyspnea (episodes of severe sudden breathlessness at night). These are common presenting symptoms of chronic pulmonary edema due to left ventricular failure. The development of pulmonary edema may be associated with symptoms and signs of "fluid overload"; this is a non-specific term to describe the manifestations of left ventricular failure on the rest of the body and includes peripheral edema (swelling of the legs, in general, of the "pitting" variety, wherein the skin is slow to return to normal when pressed upon), raised jugular venous pressure and hepatomegaly, where the liver is enlarged and may be tender or even pulsatile. Other signs include end-inspiratory crackles (sounds heard at the end of a deep breath) on auscultation and the presence of a third heart sound.
Pulmonary edema is fluid accumulation in the tissue and air spaces of the lungs. It leads to impaired gas exchange and may cause respiratory failure. It is due to either failure of the left ventricle of the heart to remove blood adequately from the pulmonary circulation (cardiogenic pulmonary edema), or an injury to the lung parenchyma or vasculature of the lung (noncardiogenic pulmonary edema). Treatment is focused on three aspects: firstly improving respiratory function, secondly, treating the underlying cause, and thirdly avoiding further damage to the lung. Pulmonary edema, especially acute, can lead to fatal respiratory distress or cardiac arrest due to hypoxia. It is a cardinal feature of congestive heart failure. The term is from the Greek (oídēma, "swelling"), from οἰδέω (oidéō, "I swell").
As with other forms of pulmonary edema, the hallmark of SIPE is a cough which may lead to frothy or blood-tinged sputum. Symptoms include:
- Shortness of breath out of proportion to effort being expended.
- Crackles, rattling or ‘junky’ feelings deep in the chest associated with breathing effort – usually progressively worsening with increasing shortness of breath and may be cause for a panic attack
- Cough, usually distressing and productive or not of a little pink, frothy or blood-tinged sputum (hemoptysis)
The wetsuit may feel as though it is hindering breathing ability.
Hemoptysis is the coughing up of blood or blood-stained mucus from the bronchi, larynx, trachea, or lungs. This can occur with lung cancer, infections such as tuberculosis, bronchitis, or pneumonia, and certain cardiovascular conditions. Hemoptysis is considered massive at . In such cases, there are always severe injuries. The primary danger comes from choking, rather than blood loss.
Conditions which commonly involve hemoptysis include bronchitis and pneumonia, lung cancers and tuberculosis. Other possible underlying causes include aspergilloma, bronchiectasis, coccidioidomycosis, pulmonary embolism, pneumonic plague, and cystic fibrosis. Rarer causes include hereditary hemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome), Goodpasture's syndrome, and granulomatosis with polyangiitis. In children, hemoptysis is commonly caused by the presence of a foreign body in the airway. The condition can also result from over-anticoagulation from treatment by drugs such as warfarin.
Blood-laced mucus from the sinus or nose area can sometimes be misidentified as symptomatic of hemoptysis (such secretions can be a sign of nasal or sinus cancer, but also a sinus infection). Extensive non-respiratory injury can also cause one to cough up blood. Cardiac causes like congestive heart failure and mitral stenosis should be ruled out.
The origin of blood can be identified by observing its color. Bright-red, foamy blood comes from the respiratory tract, whereas dark-red, coffee-colored blood comes from the gastrointestinal tract. Sometimes hemoptysis may be rust-colored.
The most common cause of minor hemoptysis is bronchitis.
- Lung cancer, including both non-small cell lung carcinoma and small cell lung carcinoma.
- Sarcoidosis
- Aspergilloma
- Tuberculosis
- Histoplasmosis
- Pneumonia
- Pulmonary edema
- Pulmonary embolism
- Foreign body aspiration and aspiration pneumonia
- Goodpasture's syndrome
- Granulomatosis with polyangiitis
- Eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome)
- Bronchitis
- Bronchiectasis
- Pulmonary embolism
- Anticoagulant use
- Trauma
- Lung abscess
- Mitral stenosis
- Tropical eosinophilia
- Bleeding disorders
- Hughes-Stovin Syndrome and other variants of Behçet's disease
- Squamous Cell Carcinoma Of Esophagus
The symptoms for pulmonary veno-occlusive disease are the following:
Presentation may be subtle; people with mild contusion may have no symptoms at all. However, pulmonary contusion is frequently associated with signs (objective indications) and symptoms (subjective states), including those indicative of the lung injury itself and of accompanying injuries. Because gas exchange is impaired, signs of low blood oxygen saturation, such as low concentrations of oxygen in arterial blood gas and cyanosis (bluish color of the skin and mucous membranes) are commonly associated. Dyspnea (painful breathing or difficulty breathing) is commonly seen, and tolerance for exercise may be lowered. Rapid breathing and a rapid heart rate are other signs. With more severe contusions, breath sounds heard through a stethoscope may be decreased, or rales (an abnormal crackling sound in the chest accompanying breathing) may be present. People with severe contusions may have bronchorrhea (the production of watery sputum). Wheezing and coughing are other signs. Coughing up blood or bloody sputum is present in up to half of cases. Cardiac output (the volume of blood pumped by the heart) may be reduced, and hypotension (low blood pressure) is frequently present. The area of the chest wall near the contusion may be tender or painful due to associated chest wall injury.
Signs and symptoms take time to develop, and as many as half of cases are asymptomatic at the initial presentation. The more severe the injury, the more quickly symptoms become apparent. In severe cases, symptoms may occur as quickly as three or four hours after the trauma. Hypoxemia (low oxygen concentration in the arterial blood) typically becomes progressively worse over 24–48 hours after injury. In general, pulmonary contusion tends to worsen slowly over a few days, but it may also cause rapid deterioration or death if untreated.
The signs and symptoms of PAP include shortness of breath, a cough, low grade fever, and weight loss.
The clinical course of PAP is unpredictable. Spontaneous remission is recognized, and some patients have stable symptoms. Death may occur due to the progression of PAP or of any underlying associated disease. Individuals with PAP are more vulnerable to lung infections such as bacterial pneumonia, mycobacterium avium-intracellulare infection, or a fungal infection.
The signs and symptoms of ARDS often begin within two hours of an inciting event, but can occur after 1–3 days. Signs and symptoms may include shortness of breath, fast breathing, and a low oxygen level in the blood due to abnormal ventilation.
Pulmonary embolism classically presents with an acute onset of shortness of breath. Other presenting symptoms include pleuritic chest pain, cough, hemoptysis, and fever. Risk factors include deep vein thrombosis, recent surgery, cancer, and previous thromboembolism. It must always be considered in those with acute onset of shortness of breath owing to its high risk of mortality. Diagnosis however may be difficult and Wells Score is often used to assess the clinical probability. Treatment, depending on severity of symptoms typically start with anticoagulants, presence of ominous signs (low blood pressure), may warrant the use of thrombolytic drugs.
Cardiac asthma is a medical diagnosis of wheezing, coughing or shortness of breath due to congestive heart failure. It is known as cardiac asthma because the symptoms mimic ordinary asthma (bronchial asthma). One study found that patients with cardiac asthma represented one third of congestive heart failure in elderly patients.
Depending on severity, it may be classified as a medical emergency, as it can be a symptom of acute heart failure leading to the buildup of fluid in the lungs (pulmonary edema) as well as within and around the airways.
The distinction between bronchial asthma and cardiac asthma is especially important because some treatments for bronchial asthma, including inhalers, may worsen cardiac asthma or cause severe heart arrhythmias.
Bronchial asthma, in contrast, is caused by the inflammation and narrowing of pulmonary airways, causing the characteristic breathing difficulties. Bronchial asthma has nothing to do with fluid in the lungs or heart disease, or even the heart failure associated with cardiac asthma.
The symptoms of pneumonia are fever, productive cough, shortness of breath, and pleuritic chest pain. Inspiratory crackles may be heard on exam. A chest x-ray can be useful to differentiate pneumonia from congestive heart failure. As the cause is usually a bacterial infection, antibiotics are typically used for treatment.
Severity and prognosis of pneumonia can be estimated from CURB65, where C=Confusion, U= Uremia (>7), R=Respiratory rate >30, B= BP65.
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension caused by progressive blockage of the small veins in the lungs. The blockage leads to high blood pressures in the arteries of the lungs, which, in turn, leads to heart failure. The disease is progressive and fatal, with median survival of about 2 years from the time of diagnosis to death. The definitive therapy is lung transplantation.
Acute respiratory distress syndrome (ARDS) is a medical condition occurring in critically ill patients characterized by widespread inflammation in the lungs. ARDS is not a particular disease; rather, it is a clinical phenotype which may be triggered by various pathologies such as trauma, pneumonia and sepsis.
The hallmark of ARDS is diffuse injury to cells which form the barrier of the microscopic air sacs of the lungs, surfactant dysfunction, activation of the innate immune system response, and dysfunction of the body's regulation of clotting and bleeding. In effect, ARDS impairs the lungs' ability to exchange oxygen and carbon dioxide with the blood across a thin layer of the lungs' microscopic air sacs known as alveoli.
The syndrome is associated with a death rate between 20 and 50%. The risk of death varies based on severity, the person's age, and the presence of other underlying medical conditions.
Although the terminology of "adult respiratory distress syndrome" has at times been used to differentiate ARDS from "infant respiratory distress syndrome" in newborns, the international consensus is that "acute respiratory distress syndrome" is the best term because ARDS can affect people of all ages.
Pulmonary contusion and laceration are injuries to the lung tissue. Pulmonary laceration, in which lung tissue is torn or cut, differs from pulmonary contusion in that the former involves disruption of the macroscopic architecture of the lung, while the latter does not. When lacerations fill with blood, the result is pulmonary hematoma, a collection of blood within the lung tissue. Contusion involves hemorrhage in the alveoli (tiny air-filled sacs responsible for absorbing oxygen), but a hematoma is a discrete clot of blood not interspersed with lung tissue. A collapsed lung can result when the pleural cavity (the space outside the lung) accumulates blood (hemothorax) or air (pneumothorax) or both (hemopneumothorax). These conditions do not inherently involve damage to the lung tissue itself, but they may be associated with it. Injuries to the chest wall are also distinct from but may be associated with lung injuries. Chest wall injuries include rib fractures and flail chest, in which multiple ribs are broken so that a segment of the ribcage is detached from the rest of the chest wall and moves independently.
Signs that consolidation may have occurred include:
- Expansion of the thorax on inspiration is reduced on the affected side
- Vocal fremitus is increased on the side with consolidation
- Percussion is dull in affected area
- Breath sounds are bronchial
- Possible medium, late, or pan-inspiratory crackles
- Vocal resonance is increased. Here, the patient's voice (or whisper, as in whispered pectoriloquy) can be heard more clearly when there is consolidation, as opposed to in the healthy lung where speech sounds muffled.
- A pleural rub may be present.
- A lower expected Pa02 than calculated in the alveolar gas equation
Physiological and symptomatic changes often vary according to the altitude involved.
The Lake Louise Consensus Definition for High-Altitude Pulmonary Edema has set widely used criteria for defining HAPE symptoms:
Symptoms: at least two of:
- Difficulty in breathing (dyspnea) at rest
- Cough
- Weakness or decreased exercise performance
- Chest tightness or congestion
Signs: at least two of:
- Crackles or wheezing (while breathing) in at least one lung field
- Central cyanosis (blue skin color)
- Tachypnea (rapid shallow breathing)
- Tachycardia (rapid heart rate)
The initial cause of HAPE is a shortage of oxygen caused by the lower air pressure at high altitudes.
The mechanisms by which this oxygen shortage causes HAPE are poorly understood, but two processes are believed to be important:
1. Increased pulmonary arterial and capillary pressures (pulmonary hypertension) secondary to hypoxic pulmonary vasoconstriction.
2. An idiopathic non-inflammatory increase in the permeability of the vascular endothelium.
Although higher pulmonary arterial pressures are associated with the development of HAPE, the presence of pulmonary hypertension may not in itself be sufficient to explain the development of edema: severe pulmonary hypertension can exist in the absence of clinical HAPE in subjects at high altitude.
Swimming induced pulmonary edema (SIPE), also known as immersion pulmonary edema, occurs when fluids from the blood leak abnormally from the small vessels of the lung (pulmonary capillaries) into the airspaces (alveoli).
SIPE usually occurs during exertion in conditions of water immersion, such as swimming and diving. With the recent surge in popularity of triathlons and swimming in open water events there has been an increasing incidence of SIPE. It has been reported in scuba divers, apnea (breath hold) free-diving competitors combat swimmers, and triathletes. The causes are incompletely understood at the present time.
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of lung diseases affecting the interstitium (the tissue and space around the air sacs of the lungs). It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage. But in interstitial lung disease, the repair process goes awry and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The term ILD is used to distinguish these diseases from obstructive airways diseases.
In children, several unique forms of ILD exist which are specific for the young age groups. The acronym chILD is used for this group of diseases and is derived from the English name, Children’s Interstitial Lung Diseases – chILD.
Prolonged ILD may result in pulmonary fibrosis, but this is not always the case. Idiopathic pulmonary fibrosis is interstitial lung disease for which no obvious cause can be identified (idiopathic), and is associated with typical findings both radiographic (basal and pleural based fibrosis with honeycombing) and pathologic (temporally and spatially heterogeneous fibrosis, histopathologic honeycombing and fibroblastic foci).
In 2013 interstitial lung disease affected 595,000 people globally. This resulted in 471,000 deaths.
Pulmonary alveolar proteinosis (PAP) is a rare lung disease in which an abnormal accumulation of pulmonary surfactant occurs within the alveoli (microscopic air sacs in the lung), interfering with the lungs' ability to exchange oxygen from the air, and carbon dioxide from the blood. PAP can occur in a primary form or secondarily in the settings of certain cancers (such as myeloid leukemia), lung infections, or environmental exposure to dusts or chemicals. Rare familial forms have also been recognized, suggesting a genetic component in those cases.
Pulmonary Langerhans cell histiocytosis, silicosis, coal workers pneumoconiosis, carmustine related pulmonary fibrosis, respiratory broncholitis associated with interstitial lung disease.
- Lower lung predominance
Idiopathic pulmonary fibrosis, pulmonary fibrosis associated with connective tissue diseases, asbestosis, chronic aspiration
- Central predominance (perihilar)
Sarcoidosis, berylliosis
- Peripheral predominance
Idiopathic pulmonary fibrosis, chronic eosinophilic pneumonia, cryptogenic organizing pneumonia
Alveolar disease is visible on chest radiography as small, ill-defined nodules of homogeneous density centered on the acini or bronchioles. The nodules coalesce early in the course of disease, such that the nodules may only be seen as soft fluffy edges in the periphery.
When the nodules are centered on the hilar regions, the chest x-ray may develop what is called the "butterfly," or "batwing" appearance. The nodules may also have a segmental or lobar distribution. Air alveolograms and air bronchograms can also be seen.
These findings appear soon after the onset of symptoms and change rapidly thereafter.
A segmental or lobar pattern may be apparent after aspiration pneumonia, atelectasis, lung contusion, localized pulmonary edema, obstructive pneumonia, pneumonia, pulmonary embolism with infarction, or tuberculosis.
Alveolar lung diseases, are a group of diseases that mainly affect the alveoli of the lungs.
A pulmonary consolidation is a region of (normally compressible) lung tissue that has filled with liquid, a condition marked by induration (swelling or hardening of normally soft tissue) of a normally aerated lung. It is considered a radiologic sign. Consolidation occurs through accumulation of inflammatory cellular exudate in the alveoli and adjoining ducts. Simply, it is defined as alveolar space that contains liquid instead of gas. The liquid can be pulmonary edema, inflammatory exudate, pus, inhaled water, or blood (from bronchial tree or hemorrhage from a pulmonary artery). It must be present to diagnose pneumonia: the signs of lobar pneumonia are characteristic and clinically referred to as consolidation.
High-altitude pulmonary edema (HAPE) ("HAPO" spelled oedema in British English) is a life-threatening form of non-cardiogenic pulmonary edema (fluid accumulation in the lungs) that occurs in otherwise healthy mountaineers at altitudes typically above . However, cases have also been reported at lower altitudes (between in highly vulnerable subjects), though what makes some people susceptible to HAPE is currently unknown. HAPE remains the major cause of death related to high-altitude exposure, with a high mortality rate in the absence of adequate emergency treatment.