Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
EEM syndrome exhibits a combination of prominent symptoms and features. These include: ectodermal dysplasia (systemic malformations of ectodermal tissues), ectrodactyly ("lobster claw" deformity in the hands and feet), macular dystrophy (a progressive eye disease), syndactyly (webbed fingers or toes), hypotrichosis (a type of hair-loss), and dental abnormalities (hypodontia).
The clinical manifestations present at birth are generalized hypotonia, muscle weakness, developmental delay with mental retardation and occasional seizures. The congenital muscular dystrophy is characterized by hypoglycosylation of α-dystroglycan.
Those born with the disease also experience severe ocular and brain defects. Half of all children with WWS are born with encephalocele, which is a gap in the skull that will not seal. The meninges of the brain protrude through this gap due to the neural tube failing to close during development. A malformation of the a baby's cerebellum is often a sign of this disease.Common ocular issues associated with WWS are abnormally small eyes and retinal abnormalities cause by an underdeveloped light-sensitive area in the back of the eye.
People with ODD syndrome often have a characteristic appearance. Visible features of the condition include:
- small teeth that are prone to caries because of underdeveloped tooth enamel;
- a long, thin nose;
- unusually small eyes; and
- type III syndactyly of the fourth and fifth fingers.
Iris atrophy and glaucoma are more common than average. The size of the eyes often interferes with learning to read; special eyeglasses may be required. Hair may be fine, thin, dry, or fragile; in some families, it is curly.
Neurologic abnormalities may be seen in adults. The neurologic changes may appear earlier in each subsequent generation and can include abnormal white matter, conductive deafness, and various kinds of paresis, including ataxia, spastic paraplegia, difficulty controlling the eyes, and bladder and bowel disturbances.
Affected individuals commonly suffer from photophobia, nystagmus and achromatopsia. Other symptoms affecting vision may include night vision difficulties; optic disc pallor; narrow vessels; macular atrophy with pigment mottling; peripheral deep white dot deposits or retinal pigment epithelium (RPE) alterations in the inferonasal retina; decreased foveal and retinal thickness; attenuation of retinal lamination; hyperreflectivity in the choroids (due to RPE and choriocapillaris atrophy); impairment of color vision; and progressive loss of vision with advancing age.
In line with ameleogenesis imperfecta, affected members may display teeth yellow-brown in colour, dysplastic, presenting numerous caries; reduced enamel layer prone to posteruptive failure; and abnormality of morphology involving dentine.
There is no specific treatment or cure for individuals affected with this type of syndrome, though some of the abnormal physical features may be surgically correctable.
There is a range of signs and symptoms including cleft lip or palate, mental retardation and various forms of ectodermal dysplasia. Additional symptoms may include fused eyelids, absent nails, delayed bone growth and dry skin. It is believed that this syndrome follows an autosomal dominant pattern of inheritance with incomplete penetrance, and caused by a mutation affecting the TP63 gene. It has been suggested that this syndrome, AEC syndrome and Rapp–Hodgkin syndrome may be variations of the same disease.
Walker–Warburg syndrome (WWS), also called Warburg syndrome, Chemke syndrome, HARD syndrome (Hydrocephalus, Agyria and Retinal Dysplasia), Pagon syndrome, cerebroocular dysgenesis (COD) or cerebroocular dysplasia-muscular dystrophy syndrome (COD-MD), is a rare form of autosomal recessive congenital muscular dystrophy. It is associated with brain (lissencephaly, hydrocephalus, cerebellar malformations) and eye abnormalities. This condition has a worldwide distribution. The overall incidence is unknown but a survey in North-eastern Italy has reported an incidence rate of 1.2 per 100,000 live births. It is the most severe form of congenital muscular dystrophy with most children dying before the age of three years.
These are pleomorphic and include
- dolichocephaly (with or without sagittal suture synostosis)
- microcephaly
- pre- and postnatal growth retardation
- brachydactyly
- narrow thorax
- rhizomelic dwarfism
- epicanthal folds
- hypodontia and/or microdontia
- sparse, slow-growing, hyperpigmented, fine hair
- nail dysplasia
- hypohydrosis
- chronic renal failure
- heart defects
- liver fibrosis
- visual deficits
- photophobia
- hypoplasia of the posterior corpus callosum
- aberrant calcium homeostasis
Electroretinography shows gross abnormalities.
Two fetuses of 19 and 23 weeks gestation have also been reported. They showed acromesomelic shortening, craniofacial characteristics with absence of craniosynostosis, small kidneys with tubular and glomerular microscopic cysts, persistent ductal plate with portal fibrosis in the liver, small adrenals, an enlarged cisterna magna and a posterior fossa cyst.
EEM syndrome (or Ectodermal dysplasia, Ectrodactyly and Macular dystrophy syndrome) is an autosomal recessive congenital malformation disorder affecting tissues associated with the ectoderm (skin, hair, nails, teeth), and also the hands, feet and eyes.
Spastic ataxia-corneal dystrophy syndrome (also known as Bedouin spastic ataxia syndrome) is an autosomally resessive disease. It has been found in an inbred Bedouin family. It was first described in 1986. A member of the family who was first diagnosed with this disease also had Bartter syndrome. It was concluded by its first descriptors Mousa-Al et al. that the disease is different from a disease known as corneal-cerebellar syndrome that had been found in 1985.
Symptoms include spastic ataxia, cataracts, macular corneal dystrophy and nonaxial myopia. Mental development is normal.
Sensenbrenner syndrome (OMIM #218330) is a rare (less than 20 cases reported by 2010) multisystem disease first described in 1975. It is inherited in an autosomal recessive fashion, and a number of genes appear to be responsible. Three genes responsible have been identified: intraflagellar transport (IFT)122 (WDR10), IFT43 — a subunit of the IFT complex A machinery of primary cilia, and WDR35 (IFT121: TULP4)
It is also known as Sensenbrenner–Dorst–Owens syndrome, Levin Syndrome I and cranioectodermal dysplasia (CED)
Oculodentodigital syndrome (ODD syndrome) is an extremely rare genetic condition that typically results in small eyes, underdeveloped teeth, and syndactyly and malformation of the fourth and fifth fingers. It has also been called oculo-dento-digital syndrome, oculodentodigital dysplasia (ODDD), and oculodentoosseous dysplasia (ODOD). It is considered a kind of ectodermal dysplasia.
This condition is characterised by symmetrical lesions on the temples resembling forceps marks. It is characterized a puckered skin due to a virtual absence of subcutaneous fat. It is apparent at birth. Other lesions that may be present include puffy, wrinkled skin around the eyes and/or abnormalities of the eyelashes, eyebrows, and eyelids. The eyebrows may be up slanting or outward slanting. Occasionally the bridge of the nose may appear flat, while the tip may appear unusually rounded. The chin may be furrowed. The upper lip may be prominent with a down turned mouth. Other features that have been reported include dysplastic and low set ears, linear radiatory impressions on the forehead and congenital horizontal nystagmus.
Those with the Setleis syndrome may be missing eyelashes on both the upper and lower lids or may have multiple rows of lashes on the upper lids but none on the lower lids.A possible association with intra abdominal cancer has been reported but to date this has not been confirmed in other studies.
ADULT syndrome features include ectrodactyly, syndactyly, excessive freckling, lacrimal duct anomalies, dysplastic nails, hypodontia, hypoplastic breasts and nipples, hypotrichosis, hypohidrosis, broad nasal bridge, midfacial hypoplasia, exfoliative dermatitis, and xerosis. The lack of facial clefting and ankyloblepharon are important because they exist in ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC) but not in ADULT syndrome.
Jalili syndrome is a genetic disorder characterized by the combination of cone-rod dystrophy of the retina and amelogenesis imperfecta. It was characterized in 1988 by Dr. I. K. Jalili and Dr. N. J. D. Smith, following the examination of 29 members of an inbred, Arab family living within the Gaza Strip.
Zadik–Barak–Levin syndrome (ZBLS) is a congenital disorder in humans. Presenting conditions include primary hypothyroidism, cleft palate, hypodontia, and ectodermal dysplasia. It is the result of an embryonic defect in the mesodermal-ectodermal midline development.
Features of YVS include growth retardation before and after birth, defective growth of the bones of the skull along with complete or partial absence of the shoulder blades and characteristic facial features. Additional symptoms may include abnormalities of the fingers and/or toes. In most cases, infants with this disorder experience severe feeding problems and respiratory difficulties. In addition, affected infants may have heart defects.
Hair growth on the head is noticeably less full than normal, and the hairs are very weak; the rest of the body shows normal hair.
The macular degeneration comes on slowly with deterioration of central vision, leading to a loss of reading ability. Those affected may otherwise develop in a completely healthy manner; life expectancy is normal.
Ectodermal dysplasia is characterized by absent sweat glands resulting in dry (hypohydrotic), often scale-like skin, sparse and usually coarse scalp hair that is often blonde, sparse eyebrows and eyelashes, and small brittle nails. In addition, abnormalities of ectodermal derivatives, neuroectodermal derivatives, and mesectodermal derivatives are often found. The ectodermal derivative abnormalities can affect the epidermis including mammary, pituitary and sweat glands, as well as hairs, dental enamel, nails, lens, and the internal ear. Neuroectodermal derivatives that can be affected include sensory placodes, cutaneous pigmental cells, and hair buds. Mesectodermal derivatives affected can include the dermis, hypodermis, dentin, head muscles and conjunctival cells, cervicofacial vascular endothelial cells, and part of the maxillofacial skeleton.
The hypohydrotic symptoms of ectodermal dysplasia described above are evidenced not only in the skin of affected individuals, but also in their phonation and voice production. Because the vocal folds may not be as hydrated as is necessary during the adduction phase of vocal fold vibration (due to lack of lubrication), a complete seal may not be accomplished between the folds and mucosal wave movement may be disrupted. This results in air escapement between the folds and the production of breathy voice, which often accompanies the skin abnormalities of ectodermal dysplasia.
There is much discrepancy in the literature regarding the exact nature of the facial clefting involved in EEC. Some authors claim that the clefting involved in EEC is always cleft lip +/- palate and use this marker as a means of distinguishing EEC from other syndromes, such as AEC syndrome (ankyloblepharon, ectodermal dysplasia, and clefting) in which other types of clefting are found. Other authors include cleft palate only (CPO) in conjunction with ectrodactyly and ectodermal dysplasia as sufficient for a diagnosis of EEC.
Acro–dermato–ungual–lacrimal–tooth (ADULT) syndrome is a rare genetic disease. ADULT syndrome is an autosomal dominant form of ectodermal dysplasia, a group of disorders that affects the hair, teeth, nails, sweat glands, and extremities. The syndrome arises from a mutation in the TP63 gene. This disease was previously thought to be a form of ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC), but was classified as a different disease in 1993 by Propping and Zerres.
Robinow noted the resemblance of affected patients' faces to that of a fetus, using the term "fetal facies" to describe the appearance of a small face and widely spaced eyes. Clinical features also may include a short, upturned nose, a prominent forehead, and a flat nasal bridge. The upper lip may be "tented", exposing dental crowding, "tongue tie", or gum hypertrophy.
Though the eyes do not protrude, abnormalities in the lower eyelid may give that impression. Surgery may be necessary if the eyes cannot close fully. In addition, the ears may be set low on the head or have a deformed pinna.
Patients suffer from dwarfism, short lower arms, small feet, and small hands. Fingers and toes may also be abnormally short and laterally or medially bent. The thumb may be displaced and some patients, notably in Turkey, experience ectrodactyly. All patients often suffer from vertebral segmentation abnormalities. Those with the dominant variant have, at most, a single butterfly vertebra. Those with the recessive form, however, may suffer from hemivertebrae, vertebral fusion, and rib anomalies. Some cases resemble Jarcho-Levin syndrome or spondylocostal dysostosis.
Genital defects characteristically seen in males include a micropenis with a normally developed scrotum and testes. Sometimes, testicles may be undescended, or the patient may suffer from hypospadias. Female genital defects may include a reduced size clitoris and underdeveloped labia minora. Infrequently, the labia majora may also be underdeveloped. Some research has shown that females may experience vaginal atresia or haematocolpos.
The autosomal recessive form of the disorder tends to be much more severe. Examples of differences are summarized in the following table:
BFPP is a cobblestone-like cortical malformation of the brain. Disruptions of cerebral cortical development due to abnormal neuronal migration and positioning usually lead to cortical disorders, which includes cobblestone lissencephaly. Cobblestone lissencephaly is typically seen in three different human congenital muscular dystrophy syndromes: Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and muscle-eye-brain disease. In cobblestone lissencephaly, the brain surface actually has a bumpy contour caused by the presence of collections of misplaced neurons and glial cells that have migrated beyond the normal surface boundaries of the brain. Sometimes regions populated by these misplaced cells have caused a radiologic misdiagnosis of polymicrogyria. However, the presence of other abnormalities in these cobblestone lissencephaly syndromes, including ocular anomalies, congenital muscular dystrophy, ventriculomegaly, and cerebellar dysplasia, usually distinguishes these disorders from polymicrogyria. There are no anatomopathologic studies that have characterized the pattern of cortical laminar alterations in patients with GPR56 gene mutations, but it has been suggested that the imaging characteristics of BFPP, including myelination defects and cerebellar cortical dysplasia, are reminiscent of those of the so-called cobblestone malformations (muscle-eye-brain disease and Fukuyama congenital muscular dystrophy) that are also associated with N-glycosylation defects in the developing brain.
Lissencephaly ("smooth brain") is the extreme form of pachygyria. In lissencephaly, few or no sulci are seen on the cortical surface, resulting in a broad, smooth appearance to the entire brain. Lissencephaly can be radiologically confused with polymicrogyria, particularly with low-resolution imaging, but the smoothness and lack of irregularity in the gray-white junction, along with markedly increased cortical thickness, distinguishes lissencephaly.
GPR56 mutation also can cause a severe encelphalopathy which is associated with electro clinical features of the Lennox-Gastaut syndrome. Lennox-Gastaut syndrome can be cryptogenic or symptomatic, but the symptomatic forms have been associated with multiple etiologies and abnormal cortical development. BFPP caused by GPR56 mutations is a representation of a malformation of cortical development that causes Lennox-Gastaut Syndrome.
Polymicrogyria usually gets misdiagnose with pacygyria so therefore it needs to be distinguished from pachygyria. Pachygyria is a distinct brain malformation in which the surface folds are excessively broad and sparse. Pachygyria and polymicrogyria may look similar on low-resolution neuroimaging such as CT because the cortical thickness can appear to be increased and the gyri can appear to be broad and smooth in both conditions. This is why higher resolution neuroimaging are needed such as an MRI.
Lelis syndrome it is a genetic disorder, a rare condition with dermatological and dental findings characterized by the association of ectodermal dysplasia (hypotrichosis and hypohidrosis) with acanthosis nigricans. Other clinical features may include palmoplantar hyperkeratosis, nail dystrophy, intellectual deficit, disturbances of skin pigmentation (perioral and periorbital hyperpigmentation, vitiligo, and perinevic leukoderma) and hypodontia. Transmission is autosomal recessive.
Clinical expressions of PPS are highly variable, but include the following:
- Limb findings: an extensive web running from behind the knee down to the heel (90%), malformed toenails, and webbed toes.
- Facial findings: cleft palate with or without cleft lip (75%), pits in the lower lip (40%), and fibrous bands in the mouth known as syngnathia (25%).
- Genital findings (50%): hypoplasia of the labia majora, malformation of the scrotum, and cryptorchidism.