Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Ohtahara syndrome is rare and the earliest-appearing age-related epileptic encephalopathy, with seizure onset occurring within the first three months of life, and often in the first ten days. Many, but not all, cases of OS evolve into other seizure disorders, namely West syndrome and Lennox-Gastaut syndrome.
The primary outward manifestation of OS is seizures, usually presenting as tonic seizures (a generalized seizure involving a sudden stiffening of the limbs). Other seizure types that may occur include partial seizures, clusters of infantile spasms, and, rarely, myoclonic seizures. In addition to seizures, children with OS exhibit profound mental and physical retardation.
Clinically, OS is characterized by a "burst suppression" pattern on an EEG. This pattern involves high voltage spike wave discharge followed by little brain wave activity.
It is named for the Japanese neurologist Shunsuke Ohtahara (1930–2013), who identified it in 1976.
Frontal lobe epilepsy, usually a symptomatic or cryptogenic localization-related epilepsy, arises from lesions causing seizures that occur in the frontal lobes of the brain. These epilepsies can be difficult to diagnose because the symptoms of seizures can easily be confused with nonepileptic spells and, because of limitations of the EEG, be difficult to "see" with standard scalp EEG.
Juvenile absence epilepsy is an idiopathic generalized epilepsy with later onset than CAE, typically in prepubertal adolescence, with the most frequent seizure type being absence seizures. Generalized tonic-clonic seizures can occur. Often, 3 Hz spike-wave or multiple spike discharges can be seen on EEG. The prognosis is mixed, with some patients going on to a syndrome that is poorly distinguishable from JME.
Myoclonic jerks that are not epileptic may be due to a nervous system disorder or other metabolic abnormalities that may arise in renal (e.g. hyperuraemia) and liver failure (e.g. high ammonia states).
Epilepsy in females with mental retardation, is characterized by seizure onset in infancy or early childhood (6–36 months) and cognitive impairment in some cases. Seizures are predominantly generalized, including tonic-clonic, tonic and atonic seizures. The spectrum of phenotypes has been extended to include female patients with early onset epileptic encephalopathies resembling Dravet syndrome, FIRES, Generalized epilepsy with febrile seizures plus (GEFS+) or focal epilepsy with or without mental retardation. EFMR is caused by mutations in PCDH19 (protocadherin 19).
Myoclonus can be described as brief jerks of the body; it can involve any part of the body, but it is mostly seen in limbs or facial muscles. The jerks are usually involuntary and can lead to falls. EEG is used to read brain wave activity. Spike activity produced from the brain is usually correlated with brief jerks seen on EMG or excessive muscle artifact. They usually occur without detectable loss of consciousness and may be generalized, regional or focal on the EEG tracing. Myclonus jerks can be epileptic or not epileptic. Epileptic myoclonus is an elementary electroclinical manifestation of epilepsy involving descending neurons, whose spatial (spread) or temporal (self-sustained repetition) amplification can trigger overt epileptic activity.
Signs of JME are brief episodes of involuntary muscle twitching occurring early in the morning or shortly before falling asleep. This does not usually result in the person falling, but rather dropping objects. These muscle twitching episodes are more common in the arms than in the legs. Other seizure types such as generalized tonic-clonic and absence seizures can also occur. Patients often report quick jerking movements in the morning that results in knocking over objects such as their morning orange juice. Clusters of myoclonic seizures can lead to absence seizures, and clusters of absence seizures can lead to generalized tonic-clonic seizures. The onset of symptoms is generally around age 10-16 although some patients can present in their 20s or even early 30s. The myoclonic jerks generally precede the generalized tonic-clonic seizures by several months. Some people with the disorder never get generalized tonic-clonic seizures (GTCs). Sleep deprivation is a major factor in triggering GTCs. College students often present with a GTC after "pulling an all-nighter." Patients with JME generally do not have other neurological problems.
The age of onset of seizures is typically between three and five, though onset can occur at an earlier or later age. The syndrome shows clear parallels to West syndrome, enough to suggest a connection.
Daily multiple seizures are typical in LGS. Also typical is the broad range of seizures that can occur, larger than that of any other epileptic syndrome. The most frequently occurring seizure type is tonic seizures, which are often nocturnal (90%); the second most frequent are myoclonic seizures, which often occur when the person is over-tired.
Atonic, atypical absence, tonic, complex partial, focalized and tonic–clonic seizures are also common. Additionally, about half of patients will have status epilepticus, usually the nonconvulsive type, which is characterized by dizziness, apathy, and unresponsiveness. The seizures can cause sudden falling (or spasms in tonic, atonic and myoclonic episodes) and/or loss of balance, which is why patients often wear a helmet to prevent head injury.
In addition to daily multiple seizures of various types, children with LGS frequently have arrested/slowed psycho-motor development and behavior disorders.
The syndrome is also characterized by an (between-seizures) EEG featuring slow spike-wave complexes.
The hallmark characteristic of PCDH19 gene-related epilepsy is early-onset cluster seizures that often cause cyanotic spells, which start in infancy or early childhood. The onset of the first cluster of seizures usually coincides with a fever (febrile seizures), however subsequent seizures may be febrile or afebrile. The seizure clusters are generally brief seizures, lasting 1–5 minutes, often accompanied by fearful screaming observed in 63% of girls. These cluster seizures can occur more than 10 times a day over several days, with varying amounts of time between seizure clusters.
Over time, children with PCDH19 gene-related epilepsy tend to exhibit multiple seizure types, including focal, generalized tonic-clonic, tonic, atonic, myclonus, and absence seizures. In a small study of 35 female patients with PCDH19 gene-related epilepsy, rare episodes of status epilepticus occurred in about 30% of patients in the early course of the disorder.
In PCDH19 gene-related epilepsy, the seizures are often refractory to treatment, especially in infancy and childhood. Additionally, seizures are usually characterized by persistence of cluster seizures, with variable frequency. In a study of 35 female patients with PCDH19 gene-related epilepsy, approximately 30% had become seizure free in the girl's childhood (mean age of 12 years), yet some continued into adulthood. In the same study, a few patients still had recurrent cluster seizures that evolved into status epilepticus in childhood or early adolescence.
Early myoclonic encephalopathy (EME) is an epilepsy syndrome where myoclonic seizures develop in the neonatal period. After several months, the seizure pattern may develop to infantile spasms (West syndrome). Various genetic and metabolic disorders are responsible. The seizures are resistant to treatment. The neurology is very abnormal and patients often do not live beyond one year.
Generalized seizures can be either absence seizures, myoclonic seizures, clonic seizures, tonic-clonic seizures or atonic seizures.
Generalized seizures occur in various seizure syndromes, including myoclonic epilepsy, familial neonatal convulsions, childhood absence epilepsy, absence epilepsy, infantile spasms (West's syndrome), Juvenile Myoclonic Epilepsy and Lennox-Gastaut syndrome.
There are six main types of generalized seizures: tonic-clonic, tonic, clonic, myoclonic, absence, and atonic seizures. They all involve a loss of consciousness and typically happen without warning.
- Tonic-clonic seizures present with a contraction of the limbs followed by their extension, along with arching of the back for 10–30 seconds. A cry may be heard due to contraction of the chest muscles. The limbs then begin to shake in unison. After the shaking has stopped it may take 10–30 minutes for the person to return to normal.
- Tonic seizures produce constant contractions of the muscles. The person may turn blue if breathing is impaired.
- Clonic seizures involve shaking of the limbs in unison.
- Myoclonic seizures involve spasms of muscles in either a few areas or generalized through the body.
- Absence seizures can be subtle, with only a slight turn of the head or eye blinking. The person often does not fall over and may return to normal right after the seizure ends, though there may also be a period of post-ictal disorientation.
- Atonic seizures involve the loss of muscle activity for greater than one second. This typically occurs bilaterally (on both sides of the body).
Focal seizures are often preceded by certain experiences, known as an aura. These may include: sensory, visual, psychic, autonomic, olfactory or motor phenomena.
In a complex partial seizure a person may appear confused or dazed and can not respond to questions or direction. Focal seizure may become generalized.
Jerking activity may start in a specific muscle group and spread to surrounding muscle groups—known as a "Jacksonian march". Unusual activities that are not consciously created may occur. These are known as automatisms and include simple activities like smacking of the lips or more complex activities such as attempts to pick something up.
Ohtahara syndrome (OS), also known as early infantile epileptic encephalopathy with burst-suppression (EIEE), is a progressive epileptic encephalopathy. The syndrome is outwardly characterized by tonic spasms and partial seizures, and receives its more elaborate name from the pattern of burst activity on an electroencephalogram (EEG). It is an extremely debilitating progressive neurological disorder, involving intractable seizures and severe mental retardation. No single cause has been identified, although in many cases structural brain damage is present.
Generalized epilepsy, also known as primary generalized epilepsy or idiopathic epilepsy, is a form of epilepsy characterised by generalised seizures with no apparent cause. Generalized seizures, as opposed to focal seizures, are a type of seizure that impairs consciousness and distorts the electrical activity of the whole or a larger portion of the brain (which can be seen, for example, on electroencephalography, EEG).
Generalized epilepsy is "primary" because the epilepsy is the originally diagnosed condition itself, as opposed to "secondary" epilepsy, which occurs as a symptom of a diagnosed condition.
Juvenile myoclonic epilepsy is an inherited genetic syndrome, but the way in which this disorder is inherited is unclear. Frequently (17-49%) those with JME have relatives with a history of epileptic seizures. It is currently unclear if JME is more common in males or females. Almost all cases of JME, however, have an onset in early childhood to puberty.
Beyond early-onset and treatment-resistant cluster seizures, PCDH19 gene-related epilepsy is usually, but not always, associated with cognitive and sensory impairment of varying degrees, and psychiatric and behavioral problems. It is estimated that up to 60 to 75% of the females have cognitive deficits, ranging from mild to severe intellectual disability, which do not appear to be related to frequency or severity of seizures. Development over the course of a female patients’ childhood can follow one of three courses: delays from birth that persist into adulthood, normal development and then regression, or normal intellectual development. It is not yet clear why some people experience delayed intellectual growth and others regress with epilepsy.
From the University of Melbourne study, two-thirds of PCDH19 gene-related epilepsy patients have borderline intellectual functioning or intellectual disability, while one third have normal intelligence. A connection to depression, autism, obsessive and aggressive behaviors and other disorders has been observed in PCDH19 gene-related epilepsy. Approximately 40-60% of girls diagnosed with a PCDH19 mutation are on the autism spectrum.
Many of those with PCDH19 gene mutations also exhibit behavioral and psychological problems – including ADHD, aggression, obsessive-compulsive disorder, and anxiety. Other neurological abnormalities may present, including sleep disturbances, ictal apnea, motor deficits, hypotonia, language delay, sensory integration problems and dysautonomia.
The most common type (60%) of seizures are convulsive. Of these, one-third begin as generalized seizures from the start, affecting both hemispheres of the brain. Two-thirds begin as focal seizures (which affect one hemisphere of the brain) which may then progress to generalized seizures. The remaining 40% of seizures are non-convulsive. An example of this type is the absence seizure, which presents as a decreased level of consciousness and usually lasts about 10 seconds.
Focal seizures are often preceded by certain experiences, known as auras. They include sensory (visual, hearing, or smell), psychic, autonomic, and motor phenomena. Jerking activity may start in a specific muscle group and spread to surrounding muscle groups in which case it is known as a Jacksonian march. Automatisms may occur, which are non-consciously-generated activities and mostly simple repetitive movements like smacking of the lips or more complex activities such as attempts to pick up something.
There are six main types of generalized seizures: tonic-clonic, tonic, clonic, myoclonic, absence, and atonic seizures. They all involve loss of consciousness and typically happen without warning.
Tonic-clonic seizures occur with a contraction of the limbs followed by their extension along with arching of the back which lasts 10–30 seconds (the tonic phase). A cry may be heard due to contraction of the chest muscles, followed by a shaking of the limbs in unison (clonic phase). Tonic seizures produce constant contractions of the muscles. A person often turns blue as breathing is stopped. In clonic seizures there is shaking of the limbs in unison. After the shaking has stopped it may take 10–30 minutes for the person to return to normal; this period is called the "postictal state" or "postictal phase." Loss of bowel or bladder control may occur during a seizure. The tongue may be bitten at either the tip or on the sides during a seizure. In tonic-clonic seizure, bites to the sides are more common. Tongue bites are also relatively common in psychogenic non-epileptic seizures.
Myoclonic seizures involve spasms of muscles in either a few areas or all over. Absence seizures can be subtle with only a slight turn of the head or eye blinking. The person does not fall over and returns to normal right after it ends. Atonic seizures involve the loss of muscle activity for greater than one second. This typically occurs on both sides of the body.
About 6% of those with epilepsy have seizures that are often triggered by specific events and are known as reflex seizures. Those with reflex epilepsy have seizures that are only triggered by specific stimuli. Common triggers include flashing lights and sudden noises. In certain types of epilepsy, seizures happen more often during sleep, and in other types they occur almost only when sleeping.
FIRES seizures are non-focal - there is no specified starting or stopping point - making brain surgery impossible. These seizures damage cognitive abilities of the brain such as memory or sensory abilities. This can result in learning disabilities, behavioral disorders, memory issues, sensory changes, inability to move, and death. Children continue to have seizures throughout their lives.
After the active portion of a seizure (the ictal state) there is typically a period of recovery during which there is confusion, referred to as the postictal period before a normal level of consciousness returns. It usually lasts 3 to 15 minutes but may last for hours. Other common symptoms include feeling tired, headache, difficulty speaking, and abnormal behavior. Psychosis after a seizure is relatively common, occurring in 6–10% of people. Often people do not remember what happened during this time. Localized weakness, known as Todd's paralysis, may also occur after a focal seizure. When it occurs it typically lasts for seconds to minutes but may rarely last for a day or two.
Epilepsy is most commonly recognised by involuntary movements of the head and limbs, however other characteristics include salivation, lack of and anxiety. Animals often lose consciousness and are not aware of their surroundings.
Lennox–Gastaut syndrome (LGS) is a childhood-onset epilepsy that most often appears between the second and sixth year of life. LGS is characterized by a triad of signs including frequent seizures of multiple types, an abnormal EEG pattern of less than 2.5 Hz slow spike wave activity, and moderate to severe intellectual impairment.
Epileptic symptoms are frequently the product of the spread of overactivation occurring within one central foci that travels to lateral brain regions thereby causing an array of symptoms. Due to the massive amount of diversity in both the cognitive and motor functions that occur within the frontal lobes, there is an immense variety in the types of symptoms that can arise from epileptic seizures based on the side and topography of the focal origin. In general these symptoms can range anywhere from asymmetric and abnormal body positioning to repetitive vocal outbursts and repetitive jerking movements. The symptoms typically come in short bursts that last less than a minute and often occur while a patient is sleeping. In most cases, a patient will experience a physical or emotional Aura of tingling, numbness or tension prior to a seizure occurring. Fear is associated with temporal and frontal lobe epilepsies, but in FLE the fear is predominantly expressed on the person's face whereas in TLE the fear is subjective and internal, not perceptible to the observer.
Tonic posture and clonic movements are common symptoms among most of the areas of the frontal lobe, therefore the type of seizures associated with frontal lobe epilepsy are commonly called tonic-clonic seizures. Dystonic motor movements are common to both TLE and FLE, but are usually the first symptom in FLE episodes where they are quite brief and do not affect consciousness. The seizures are complex partial, simple partial, secondarily generalized or a combination of the three. These partial seizures are often misdiagnosed as psychogenic seizures. A wide range of more specific symptoms arise when different parts of the frontal cortex are affected.
- Supplementary motor area (SMA)
- The onset and relief of the seizure are quite abrupt.
- The tonic posturing in this area is unilateral or asymmetric between the left and right hemispheres. A somatosensory aura frequently precedes many large motor and vocal symptoms and most often the afflicted person is responsive.
- "Motor symptoms": Facial grimacing and complex automatisms like kicking and pelvic thrusting
- "Vocal symptoms": Laughing, yelling, or speech arrest.
- Primary motor cortex
- The primary motor cortex has jacksonian seizures that spread to adjacent areas of the lobe which often trigger a second round of seizures originating in another cortical area. The seizures are much simpler than those that originate in the SMA and are usually clonic or myoclonic movements with speech arrest. Some dystonic or contralateral adversive posturing may also be present.
- Medial frontal, cingulate gyrus, orbitofrontal, or frontopolar regions
- Motor symptoms of seizures in this area are accompanied by emotional feelings and viscerosensory symptoms. Motor and vocal agitation are similar to that of the SMA with short repetitive thrashing, pedaling, thrusting, laughing, screaming and/or crying.
- This is some of what can cause the misdiagnosis of a psychological disorder.
- Dorsolateral cortex
- This area does not seem to have many motor symptoms beyond tonic posturing or clonic movements. Contralateral or less commonly ipsilateral head turn and eye deviation are commonly associated with this area as well.
- Operculum
- Many of the symptoms associated with this area involve the head and digestive tract: swallowing, salivation, mastication and possibly gustatory hallucinations. Preceding the seizure the person is fearful and often has an epigastric aura. There is not much physical movement except clonic facial movements. Speech is often arrested.
Watching an animal have a seizure can be quite frightening. There is not much that can be done during a seizure except to remain calm and not leave the animal alone. If your pet is having a seizure it is important to make sure they are laying down on the floor away from any water, stairs or other animals. When an animal has a seizure, do not try to grab their tongue or clear their mouth as there is a high chance you will be bitten; contrary to popular myth, neither humans nor animals can "swallow their tongue" during a seizure so it is safest to stay well away from their mouth during one. Timing seizures is also crucial. Take notes of seizures - what time they occur, how often and any other specific information which can be passed onto the vet or emergency animal clinic.
The epileptic seizures which can be observed in infants with West syndrome fall into three categories, collectively known as infantile spasms. Typically, the following triad of attack types appears; while the three types usually appear simultaneously, they also can occur independently of each other:
- "Lightning attacks": Sudden, severe myoclonic convulsions of the entire body or several parts of the body in split seconds, and the legs in particular are bent (flexor muscle convulsions here are generally more severe than extensor ones).
- "Nodding attacks": Convulsions of the throat and neck flexor muscles, during which the chin is fitfully jerked towards the breast or the head is drawn inward.
- "Salaam or jackknife attacks": a flexor spasm with rapid bending of the head and torso forward and simultaneous raising and bending of the arms while partially drawing the hands together in front of the chest and/or flailing. If one imagined this act in slow motion, it would appear similar to the Muslim ceremonial greeting (Salaam), from which this type of attack derives its name.
Episodes that include complex hyperactivity of the proximal portions of the limbs that lead to increased overall motor activity are called hypermotor seizures. When associated with bizarre movements and vocalizations these seizures are often misdiagnosed as pseudoseizures or other episodic movement disorders such as psychogenic movement disorders, familial paroxysmal dystonic choreoathetosis, paroxysmal kinesogenic choreoathetosis, or episodic ataxia type 1. Hypermotor seizure in children are often confused with pavor nocturnus (night terrors). Paroxysmal nocturnal dystonia or hypnogenic paroxysmal dystonia are other names given to describe FLE symptoms but are simply just FLE.
Autosomal Dominant Nocturnal Frontal Lobe Epilepsy (ADNFLE) is the best understood form of frontal lobe epilepsy but is often misdiagnosed as sleep apnea. Both disorders are characterized by awakening during the night which leads to daytime sleepiness. Some symptoms of sleep apnea overlap with those of ADNFLE, such as sudden awakening accompanied by a feeling of choking and on occasion motor activity which makes diagnosis difficult based on symptoms alone. Video surveillance as well as EEG is occasionally needed to differentiate between the two disorders. It has been reported that sleep apnea might be associated with epilepsy which would account for some of the misdiagnoses.