Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Various degrees of intensity and locations of epilepsy are associated with malformations of cortical development. Researchers suggest that approximately 40% of children diagnosed with drug-resistant epilepsy have some degree of cortical malformation.
Lissencephaly (to which pachygyria is most closely linked) is associated with severe mental retardation, epilepsy, and motor disability. Two characteristics of lissencephaly include its absence of convolutions (agyria) and decreased presence of convolutions (pachygyria). The types of seizures associated with lissencephaly include:
- persisting spasms
- focal seizures
- tonic seizures
- atypical seizures
- atonic seizures
Other possible symptoms of lissencephaly include telecanthus, estropia, hypertelorism, varying levels of mental retardation, cerebellar hypoplasia, corpus callosum aplasia, and decreased muscle tone and tendon reflexes. Over 90% of children affected with lissencephaly have seizures.
Patients with subcortical band heterotopia (another disorder associated with pachygyria) typically have milder symptoms and their cognitive function is closely linked to the thickness of the subcortical band and the degree of pachygyria present.
The degree of cerebral cortex malformation caused by genetic mutations is classified by the degree of malposition and the extent of faulty grey matter differentiation.
Neuronal migration disorders are generally classified into three groups:
- lissencephaly/subcortical band heterotopia
- cobblestone
- ‘other’ heterotopias
The ‘other’ types are associated with corpus callosum agenesis or cerebellar hypoplasia while the cobblestone lissencephalies are associated with eye and muscle disorders.
Classical lissencephaly, also known as type I or generalized agyria-pachygyria, is a severe brain malformation of a smooth cerebral surface, abnormally thick (10-20mm) cortex with four layers, widespread neuronal heterotopia, enlarged ventricles, and agenesis or malformation of the corpus callosum. Classical lissencephaly can range from agyria to regional pachygyria and is usually present along with subcortical band heterotopia (known as ‘double cortex’ to describe the circumferential bands of heterotopic neurons located beneath the cortex). Subcortical band heterotopia is a malformation slightly different from lissencephaly that is now classified under the agyria-pachygyria-band spectrum because it consists of a gyral pattern consistent with broad convolutions and an increased cortical thickness.
The established classification scheme for lissencephaly is based on the severity (grades 1-6) and the gradient.
- Grade 1: generalized agyria
- Grade 2: variable degree of agyria
- Grade 3: variable degree of pachygyria
- Grade 4: generalized pachygyria
- Grade 5: mixed pachygyria and subcortical band heterotopia
- Grade 6: subcortical band heterotopia alone
- Gradient ‘a’: from posterior to anterior gradient
- Gradient ‘b’: from anterior to posterior gradient
Grade 1 and Grade 4 are very rare. Grade 2 is observed in children with Miller-Dieker syndrome (a combination of lissencephaly with dysmorphic facial features, visceral abnormalities, and polydactyly). The most common lissencephaly observed, consisting of frontotemporal pachygyria and posterior agyria, is Grade 3.
Another malformation worth mentioning because of its connections to pachygyria is polymicrogyria. Polymicrogyria is characterized by many small gyri separated by shallow sulci, slightly thin cortex, neuronal heterotopia and enlarged ventricle and is often superimposed on pachygyria.
The diagnosis of PMG is merely descriptive and is not a disease in itself, nor does it describe the underlying cause of the brain malformation.
Polymicrogyria may be just one piece of a syndrome of developmental abnormalities, because children born with it may suffer from a wide spectrum of other problems, including global developmental disabilities, mild to severe mental retardation, motor dysfunctions including speech and swallowing problems, respiratory problems, and seizures. Though it is difficult to make a predictable prognosis for children with the diagnosis of PMG, there are some generalized clinical findings according to the areas of the brain that are affected.
- Bilateral frontal polymicrogyria (BFP) – Cognitive and motor delay, spastic quadriparesis, epilepsy
- Bilateral frontoparietal polymicrogyria (BFPP) – Severe cognitive and motor delay, seizures, dysconjugate gaze, cerebellar dysfunction
- Bilateral perisylvian polymicrogyria (BPP) – Pseudobulbar signs, cognitive impairment, epilepsy, some with arthrogryposis or lower motor neuron disease
- Bilateral parasagittal parieto-occipital polymicrogyria (BPPP) – Partial seizures, some with mental retardation
- Bilateral generalized polymicrogyria (BGP) – Cognitive and motor delay of variable severity, seizures
BPOP is located in the parasagittal and mesial regions of the parieto-occipital cortex. This form has been associated with IQ scores that range from average intelligence to mild mental retardation, seizures, and cognitive slowing. The age of seizure onset has been found to occur anywhere from 20 months to 15 years, and in most cases the seizures were intractable (meaning hard to control).
There are various symptoms of colpocephaly and patients can experience effects ranging from mild to severe. Some patients do not show most of the symptoms related to colpocephaly, such as psychomotor abnormalilities and agenesis of the corpus callosum. In some cases, signs appear later on in life and a significant number of children suffer only from minor disabilities.
The following list includes common symptoms of colpocephaly.
- partial or complete agenesis of the corpus callosum
- intellectual disability
- motor abnormalities
- visual defects such as, crossing of the eyes, missing visual fields, and optic nerve hypoplasia
- spasticity
- seizures
- cerebral palsy
Intracranial abnormalities include:
- Microcephaly
- Agenesis of the corpus callosum
- Meningomyelocele
- Lissencephaly
- Periventricular leukomalacia (PVL)
- Enlargement of the cisterna magna
- Cerebellar hypoplasia
Subcortical heterotopia form as distinct nodes in the white matter, "focal" indicating specific area. In general, patients present fixed neurologic deficits and develop partial epilepsy between the ages of 6 and 10. The more extensive the subcortical heterotopia, the greater the deficit; bilateral heterotopia are almost invariably associated with severe developmental delay or mental retardation. The cortex itself often suffers from an absence of gray matter and may be unusually thin or lack deep sulci. Subependymal heterotopia are frequently accompanied by other structural abnormalities, including an overall decrease in cortical mass. Patients with focal subcortical heterotopia have a variable motor and intellectual disturbance depending on the size and site of the heterotopion.
Periventricular means beside the ventricle, while subependymal (also spelled subepydymal) means beneath the ependyma; because the ependyma is the thin epithelial sheet lining the ventricles of the brain, these two terms are used to define heterotopia occurring directly next to a ventricle. This is by far the most common location for heterotopia. Patients with isolated subependymal heterotopia usually present with a seizure disorder in the second decade of life.
Subependymal heterotopia present in a wide array of variations. They can be a small single node or a large number of nodes, can exist on either or both sides of the brain at any point along the higher ventricle margins, can be small or large, single or multiple, and can form a small node or a large wavy or curved mass.
Symptomatic women with subependymal heterotopia typically present with partial epilepsy during the second decade of life; development and neurologic examinations up to that point are typically normal. Symptoms in men with subependymal heterotopia vary, depending on whether their disease is linked to their X-chromosome. Men with the X-linked form more commonly have associated anomalies, which can be neurological or more widespread, and they usually suffer from developmental problems. Otherwise (i.e., in non-X-linked cases) the symptomology is similar in both genders.
Colpocephaly is characterized by disproportionately large occipital horns of the lateral ventricles (also frontal and temporal ventricles in some cases). MRI and CT scans of patients demonstrate abnormally thick gray matter with thin poorly myelinated white matter. This happens as a result of partial or complete absence of the corpus callosum. Corpus callosum is the band of white matter connecting the two cerebral hemispheres. The corpus callosum plays an extremely important role in interhemispheric communication, thus lack of or absence of these neural fibers results in a number of disabilities.
The lemon sign on CT scans of patients refers to the shape of the fetal skull when the frontal bones lose their normal convex contour and appear flattened or inwardly scalloped. This gives the skull a shape similar to that of a lemon. The sign is seen on transverse sonograms of the fetal cranium obtained at the level of the ventricles.
A special case is found in literature where lissencephaly, colpocephaly, and septal agenesis are all present together. The CT scans of the patient shows the ventricular system having a unique appearance of a crown of a king. This is referred to as the 'CROWN SIGN'.
If a cause presents itself, the syndrome is referred to as "symptomatic" West syndrome, as the attacks manifest as a symptom of another problem. Almost any cause of brain damage could be associated, and these are divided into prenatal, perinatal, and post-natal. The following is a partial list:
- In around one third of the children, there is evidence of a profound organic disorder of the brain. This includes:
- microcephaly
- cortical dysplasia
- cerebral atrophy
- lissencephaly
- bacterial meningitis
- phakomatoses (e.g. tuberous sclerosis)
- Aicardi syndrome
- cephalhematoma and
- vascular malformation.
- Furthermore, other causes increasingly being named in the literature are:
- Incontinentia pigmenti
- Foix-Chavany-Marie syndrome
- Patau syndrome (trisomy 13)
- Sturge-Weber syndrome
- neurometabolic diseases
- congential infections (e.g. Cytomegalovirus)
- hypoglycemia
- brain damage due to asphyxiation or hypoxia (lack of oxygen, e.g. during birth), periventricular leukomalacia, cephalhematoma, cerebrovascular accident or brain damage of various types as well as that caused by premature birth.
The features of this syndrome affect the face, skin, brain and the body.
Face:
- downslanting palpebral fissures
- pointed chin
- prominent forehead
- proptosis
- thin upper lip
- wide nasal bridge
Skin:
- fragile
- hyperelastic
Brain:
- Low IQ
- Periventricular white matter lesions
Body:
The height, lower-segment, hand, and foot length are all greater than usual.
The epileptic seizures which can be observed in infants with West syndrome fall into three categories, collectively known as infantile spasms. Typically, the following triad of attack types appears; while the three types usually appear simultaneously, they also can occur independently of each other:
- "Lightning attacks": Sudden, severe myoclonic convulsions of the entire body or several parts of the body in split seconds, and the legs in particular are bent (flexor muscle convulsions here are generally more severe than extensor ones).
- "Nodding attacks": Convulsions of the throat and neck flexor muscles, during which the chin is fitfully jerked towards the breast or the head is drawn inward.
- "Salaam or jackknife attacks": a flexor spasm with rapid bending of the head and torso forward and simultaneous raising and bending of the arms while partially drawing the hands together in front of the chest and/or flailing. If one imagined this act in slow motion, it would appear similar to the Muslim ceremonial greeting (Salaam), from which this type of attack derives its name.
Delayed motor development of infants affected by PVL has been demonstrated in multiple studies. One of the earliest markers of developmental delays can be seen in the leg movements of affected infants, as early as one month of age. Those with white matter injury often exhibit "tight coupling" of leg joints (all extending or all flexing) much longer than other infants (premature and full-term). Additionally, infants with PVL may not be able to assume the same positions for sleeping, playing, and feeding as premature or full-term children of the same age. These developmental delays can continue throughout infancy, childhood, and adulthood.
Hypotonia is a common finding. Around 10% of people with distal 18q- have seizures.
Premature infants often exhibit visual impairment and motor deficits in eye control immediately after birth. However, the correction of these deficits occurs "in a predictable pattern" in healthy premature infants, and infants have vision comparable to full-term infants by 36 to 40 weeks after conception. Infants with PVL often exhibit decreased abilities to maintain a steady gaze on a fixed object and create coordinated eye movements. Additionally, children with PVL often exhibit nystagmus, strabismus, and refractive error.
Heart abnormalities are present in 25–35% of people with distal 18q-. The majority of these defects are septal. Congenital orthopedic anomalies are also relatively common, particularly rocker-bottom feet or clubfoot. Cleft lip and palate are relatively common in people with distal 18q-. Kidney abnormalities have also been reported and include horseshoe kidney, hydronephrosis, polycystic kidney, and absent kidney. Boys with distal 18q- may have genital anomalies, the most frequent being cryptorchidism and hypospadias.
While nasal glial heterotopia (NGH) is the preferred term, synonyms have included nasal glioma. However, this term is to be discouraged, as it implies a neoplasm or tumor, which it is not. By definition, nasal glial heterotopia is a specific type of choristoma. It is not a teratoma, however, which is a neoplasm comprising all three germ cell layers (ectoderm, endoderm, mesoderm). As a congenital malformation or ectopia, it is distinctly different from the trauma or iatrogenic development of an encephalocele.
Patients come to clinical attention early in life (usually at birth or within the first few months), with a firm subcutaneous nodule at bridge of nose, or as a polypoid mass within the nasal cavity, or somewhere along the upper border of the nasal bow. If the patient presents with an intranasal mass, there may be obstruction, chronic rhinosinusitis, or nasal drainage. If there is a concurrent cerebrospinal fluid (CSF) leak, then an encephalocele is much more likely.
This lesion is separated into two types based on the anatomic site of presentation:
1. Extranasal (60%): Subcutaneous bridge of nose
2. Intranasal (30%): Superior nasal cavity
3. Mixed (10%): Subcutaneous tissues and nasal cavity (larger lesions)
Kosaki overgrowth syndrome (KOGS) is a rare (27 cases reported by 2017) syndrome caused by mutations in the PDGFRB gene.
Choristomas, forms of heterotopia, are closely related benign tumors, found in abnormal locations.
It is different from hamartoma. The two can be differentiated as follows: a hamartoma is disorganized overgrowth of tissues in their normal location, (eg, Peutz-Jeghers polyps) while a choristoma is normal tissue growth in an abnormal location (e.g., gastric tissue located in distal ileum in Meckel diverticulum).
Cerebellar ataxia can occur as a result of many diseases and presents with symptoms of an inability to coordinate balance, gait, extremity and eye movements. Lesions to the cerebellum can cause dyssynergia, dysmetria, dysdiadochokinesia, dysarthria and ataxia of stance and gait. Deficits are observed with movements on the same side of the body as the lesion (ipsilateral). Clinicians often use visual observation of people performing motor tasks in order to look for signs of ataxia.
NPH may exhibit a classic triad of clinical findings (known as the Adams triad or Hakim's triad) of urinary incontinence, gait disturbance, and dementia (commonly referred to as "wet, wacky and wobbly" or "weird walking water").
- Gait disturbance is typically the initial and most prominent symptom of the triad and may be progressive, due to expansion of the ventricular system, particularly at the level of the lateral ventricles, leading to traction on the corticospinal tract motor fibers descending to the lumbosacral spinal cord. The gait disturbance can be classified as mild (cautious gait or difficulty with tandem gait), marked (evident difficulty walking or considerable unstable gait) or severe (unaided gait not possible) In the early stages, most often this gait disturbance occurs in the form of unsteadiness and impaired balance, especially when encountering stairs and curbs. Weakness and tiredness of the legs may also be part of the complaint, although examination discloses no paresis or ataxia. Often a mobility aid is used for added stability, once the patient has reached the mild to marked stage. Such aids may include a quad cane or wheeled walker. The patient's gait at the marked stage will often show a decrease in step height and foot-floor clearance, as well as a decrease in walking speed. This style is often referred to as a magnetic gait, in which the feet appear to be stuck to the walking surface, and is considered the characteristic gait disturbance of NPH. The gait may begin to mimic a Parkinsonian gait, with short shuffling steps and stooped, forward-leaning posture, but there is no rigidity or tremor. An increased tendency to fall backwards is also seen, and a broad-based gait may be employed by the patient in order to increase their base of support and thereby their stability. In the very late stages, the patient can progress from an inability to walk, to an inability to stand, sit, rise from a chair or turn over in bed; this advanced stage is referred to as "hydrocephalic astasia-abasia".
- Dementia is predominantly frontal lobe in nature and of the subcortical type of dementia. It presents in the form of abulia, forgetfulness, inertia, inattention, decreased speed of complex information procession (also described as a dullness in thinking and actions), and disturbed manipulation of acquired knowledge, which is reflective of the loss of integrity of the frontal lobes. Memory problems are usually a component of the overall problem and have been predominant in some cases, which can lead to the misdiagnosis of Alzheimer's disease. However, in NPH there may be an obvious discrepancy between (often severely) impaired recall and intact or much less impaired recognition. The dementia is thought to result from traction on frontal and limbic fibers that also run in the periventricular region.
- Urinary incontinence appears late in the illness, and is found to be of the spastic hyperreflexic, increased-urgency type associated with decreased inhibition of bladder contractions and detrusor instability. In the most severe cases, bladder hyperreflexia is associated with a lack of concern for micturition due to the severe frontal lobe cognitive impairment. This is also known as "frontal lobe incontinence", where the patient becomes indifferent to their recurrent urinary symptoms.
Normal pressure hydrocephalus (NPH), also termed Hakim's syndrome and symptomatic hydrocephalus, is a type of brain malfunction caused by expansion of the lateral cerebral ventricles and distortion of the fibers in the corona radiata. Its typical symptoms are urinary incontinence, dementia, and gait disturbance. CSF pressure is usually normal. Ventricles are chronically dilated.
The name “normal pressure” came out of a 1965 medical paper describing cases of hydrocephalus where the symptoms occurred in the presence of supposedly normal cerebrospinal-fluid pressure. The paper was published before continuous pressure-recording techniques were available. We now know that “normal pressure” is a misnomer.
The usual treatment is surgical installation of a ventriculoperitoneal shunt to drain excess CSF into the lining of the abdomen where the CSF will eventually be absorbed.
The most common symptoms of Williams syndrome are heart defects and unusual facial features. Other symptoms include failure to gain weight appropriately in infancy (failure to thrive) and low muscle tone. Individuals with Williams syndrome tend to have widely spaced teeth, a long philtrum, and a flattened nasal bridge.
Most individuals with Williams syndrome are highly verbal relative to their IQ, and are overly sociable, having what has been described as a "cocktail party" type personality. Individuals with WS hyperfocus on the eyes of others in social engagements.
As of 2017 there are 13 types of Ehlers-Danlos syndromes, with a significant overlap in features.
Hypermobile EDS - characterized primarily by joint hypermobility affecting both large and small joints, which may lead to recurrent joint dislocations and subluxations (partial dislocation). In general, people with this type have soft, smooth and velvety skin with easy bruising and chronic pain of the muscles and/or bones.
Classical EDS - associated with extremely elastic (stretchy), smooth skin that is fragile and bruises easily; wide, atrophic scars (flat or depressed scars); and joint hypermobility. Molluscoid pseudotumors (calcified hematomas over pressure points such as the elbow) and spheroids (fat-containing cysts on forearms and shins) are also frequently seen. Hypotonia and delayed motor development may occur.
Vascular EDS - characterized by thin, translucent skin that is extremely fragile and bruises easily. Arteries and certain organs such as the intestines and uterus are also fragile and prone to rupture. People with this type typically have short stature; thin scalp hair; and characteristic facial features including large eyes, a thin nose, and lobeless ears. Joint hypermobility is present, but generally confined to the small joints (fingers, toes). Other common features include club foot; tendon and/or muscle rupture; acrogeria (premature aging of the skin of the hands and feet); early onset varicose veins; pneumothorax (collapse of a lung); recession of the gums; and a decreased amount of fat under the skin.
Kyphoscoliosis EDS - associated with severe hypotonia at birth, delayed motor development, progressive scoliosis (present from birth), and scleral fragility. Affected people may also have easy bruising; fragile arteries that are prone to rupture; unusually small corneas; and osteopenia (low bone density). Other common features include a "marfanoid habitus" which is characterized by long, slender fingers (arachnodactyly); unusually long limbs; and a sunken chest (pectus excavatum) or protruding chest (pectus carinatum).
Arthrochalasia EDS - characterized by severe joint hypermobility and congenital hip dislocation. Other common features include fragile, elastic skin with easy bruising; hypotonia; kyphoscoliosis (kyphosis and scoliosis); and mild osteopenia.
Dermatosparaxis EDS - associated with extremely fragile skin leading to severe bruising and scarring; saggy, redundant skin, especially on the face; and hernias.
Brittle Cornea Syndrome (BCS) characterized by thin cornea, early onset progressive keratoglobus; and blue sclerae.
Classical-like EDS (clEDS) characterized by skin hyperextensibility with velvety skin texture and absence of atrophic scarring, generalized joint hypermobility (GJH) with or without recurrent dislocations (most often shoulder and ankle), and easily bruised skin or spontaneous ecchymoses (discolorations of the skin resulting from bleeding underneath).
Spondylodysplastic EDS (spEDS) characterized by short stature (progressive in childhood), muscle hypotonia (ranging from severe congenital, to mild later-onset), and bowing of limbs.
Musculocontractural EDS (mcEDS) characterized by congenital multiple contractures, characteristically adduction-flexion contractures and/or talipes equinovarus (clubfoot), characteristic craniofacial features, which are evident at birth or in early infancy, and skin features such as skin hyperextensibility, easy bruisability, skin fragility with atrophic scars, increased palmar wrinkling.
Myopathic EDS (mEDS) characterized by congenital muscle hypotonia, and/or muscle atrophy, that improves with age, Proximal joint contractures (joints of the knee, hip and elbow); and hypermobility of distal joints (joints of the ankles, wrists, feet and hands).
Periodontal EDS (pEDS) characterized by severe and intractable periodontitis of early onset (childhood or adolescence), lack of attached gingiva, pretibial plaques; and family history of a first-degree relative who meets clinical criteria.
Cardiac-valvular EDS (cvEDS) characterized by severe progressive cardiac-valvular problems (aortic valve, mitral valve), skin problems (hyperextensibility, atrophic scars, thin skin, easy bruising) and joint hypermobility (generalized or restricted to small joints).
Cerebellar ataxia is a form of ataxia originating in the cerebellum. Non-progressive congenital ataxia (NPCA) is a classical presentation of cerebral ataxias.