Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Patients with Sack–Barabas syndrome have thin, fragile skin, especially in the chest and abdomen, that bruises easily; hands and feet may have an aged appearance. Skin is soft but not overly stretchy.
Facial features are often distinctive, including protruding eyes, a thin nose and lips, sunken cheeks, and a small chin.
Other signs of the disorder include hypermobility of joints, tearing of tendons and muscles, painfully swollen veins in the legs, lung collapse, and slow wound healing following injury or surgery.
Infants with the condition may be born with hip dislocations and clubfeet.
Unpredictable ruptures of arteries and organs are serious complications of SBS. Ruptured arteries can cause internal bleeding, stroke, or shock, the most common cause of death in patients with this disorder.
Rupture of the intestine is seen in 25 to 30 percent of affected individuals and tearing of the uterus during pregnancy affects 2 to 3 percent of women. Although these symptoms are rare in childhood, more than 80 percent of patients experience severe complications by the age of 40. Teenage boys are at high risk for arterial rupture, often being fatal.
As of 2017 there are 13 types of Ehlers-Danlos syndromes, with a significant overlap in features.
Hypermobile EDS - characterized primarily by joint hypermobility affecting both large and small joints, which may lead to recurrent joint dislocations and subluxations (partial dislocation). In general, people with this type have soft, smooth and velvety skin with easy bruising and chronic pain of the muscles and/or bones.
Classical EDS - associated with extremely elastic (stretchy), smooth skin that is fragile and bruises easily; wide, atrophic scars (flat or depressed scars); and joint hypermobility. Molluscoid pseudotumors (calcified hematomas over pressure points such as the elbow) and spheroids (fat-containing cysts on forearms and shins) are also frequently seen. Hypotonia and delayed motor development may occur.
Vascular EDS - characterized by thin, translucent skin that is extremely fragile and bruises easily. Arteries and certain organs such as the intestines and uterus are also fragile and prone to rupture. People with this type typically have short stature; thin scalp hair; and characteristic facial features including large eyes, a thin nose, and lobeless ears. Joint hypermobility is present, but generally confined to the small joints (fingers, toes). Other common features include club foot; tendon and/or muscle rupture; acrogeria (premature aging of the skin of the hands and feet); early onset varicose veins; pneumothorax (collapse of a lung); recession of the gums; and a decreased amount of fat under the skin.
Kyphoscoliosis EDS - associated with severe hypotonia at birth, delayed motor development, progressive scoliosis (present from birth), and scleral fragility. Affected people may also have easy bruising; fragile arteries that are prone to rupture; unusually small corneas; and osteopenia (low bone density). Other common features include a "marfanoid habitus" which is characterized by long, slender fingers (arachnodactyly); unusually long limbs; and a sunken chest (pectus excavatum) or protruding chest (pectus carinatum).
Arthrochalasia EDS - characterized by severe joint hypermobility and congenital hip dislocation. Other common features include fragile, elastic skin with easy bruising; hypotonia; kyphoscoliosis (kyphosis and scoliosis); and mild osteopenia.
Dermatosparaxis EDS - associated with extremely fragile skin leading to severe bruising and scarring; saggy, redundant skin, especially on the face; and hernias.
Brittle Cornea Syndrome (BCS) characterized by thin cornea, early onset progressive keratoglobus; and blue sclerae.
Classical-like EDS (clEDS) characterized by skin hyperextensibility with velvety skin texture and absence of atrophic scarring, generalized joint hypermobility (GJH) with or without recurrent dislocations (most often shoulder and ankle), and easily bruised skin or spontaneous ecchymoses (discolorations of the skin resulting from bleeding underneath).
Spondylodysplastic EDS (spEDS) characterized by short stature (progressive in childhood), muscle hypotonia (ranging from severe congenital, to mild later-onset), and bowing of limbs.
Musculocontractural EDS (mcEDS) characterized by congenital multiple contractures, characteristically adduction-flexion contractures and/or talipes equinovarus (clubfoot), characteristic craniofacial features, which are evident at birth or in early infancy, and skin features such as skin hyperextensibility, easy bruisability, skin fragility with atrophic scars, increased palmar wrinkling.
Myopathic EDS (mEDS) characterized by congenital muscle hypotonia, and/or muscle atrophy, that improves with age, Proximal joint contractures (joints of the knee, hip and elbow); and hypermobility of distal joints (joints of the ankles, wrists, feet and hands).
Periodontal EDS (pEDS) characterized by severe and intractable periodontitis of early onset (childhood or adolescence), lack of attached gingiva, pretibial plaques; and family history of a first-degree relative who meets clinical criteria.
Cardiac-valvular EDS (cvEDS) characterized by severe progressive cardiac-valvular problems (aortic valve, mitral valve), skin problems (hyperextensibility, atrophic scars, thin skin, easy bruising) and joint hypermobility (generalized or restricted to small joints).
Because it is often undiagnosed or misdiagnosed in childhood, some instances of Ehlers–Danlos syndrome have been mischaracterized as child abuse.
The pain associated with the condition may be severe.
Sack–Barabas syndrome is an older name for the medical condition Ehlers-Danlos syndrome, vascular type. It affects the body's blood vessels and organs, making them prone to rupture.
LFS is clinically distinguished from other X-linked forms of intellectual disability by the accompanying presence of marfanoid habitus. Marfanoid habitus describes a group of physical features common to Marfan syndrome. Including Marfan syndrome and LFS, marfanoid features of this type have also been observed with several other disorders, one of which is multiple endocrine neoplasia type 2.
In LFS, specific features identified as marfanoid include: a long, narrow face; tall, thin stature; long, slender limbs, fingers and toes (not unlike arachnodactyly) with joint hyperextensibility, shortened halluces (the big toes) and long second toes.
The diagnosis of marfanoid habitus in LFS is often delayed because many of the physical features and characteristics associated with it are usually not evident until adolescence.
Craniofacial and other features of LFS include: maxillary hypoplasia (underdevelopment of the upper jaw bone), a small mandible (lower jaw bone) and receding chin, a high-arched palate (the roof of the mouth), with crowding and misalignment of the upper teeth; macrocephaly (enlarged skull) with a prominent forehead, hypernasal speech (voice), a long nose with a high, narrow nasal bridge; a deep, short philtrum (the indentation in the upper lip, beneath the nose), low-set ears with some apparent retroversion, hypotonia (decreased muscle tone), pectus excavatum (a malformity of the chest), slightly enlarged to normal testicular size in males, and seizures.
Hypernasal speech, or "hypernasality", is primarily the result of velopharyngeal insufficiency, a sometimes congenital aberration in which the velopharyngeal sphincter allows too much air into the nasal cavity during speech. In LFS, hypernasality may also be caused by failure of the soft palate and uvula to reach the back wall of the pharynx (the interior cavity of the throat where swallowing generally occurs) during speech, a condition that can be associated with a submucosal cleft palate.
People with spondyloepiphyseal dysplasia are short-statured from birth, with a very short trunk and neck and shortened limbs. Their hands and feet, however, are usually average-sized. This type of dwarfism is characterized by a normal spinal column length relative to the femur bone. Adult height ranges from 0.9 meters (35 inches) to just over 1.4 meters (55 inches). Curvature of the spine (kyphoscoliosis and lordosis) progresses during childhood and can cause problems with breathing. Changes in the spinal bones (vertebrae) in the neck may also increase the risk of spinal cord damage. Other skeletal signs include flattened vertebrae (platyspondyly), a hip joint deformity in which the upper leg bones turn inward (coxa vara), and an inward- and downward-turning foot (called clubfoot). Decreased joint mobility and arthritis often develop early in life. Medical texts often state a mild and variable change to facial features, including cheekbones close to the nose appearing flattened, although this appears to be unfounded. Some infants are born with an opening in the roof of the mouth, which is called a cleft palate. Severe nearsightedness (high myopia) is sometimes present, as are other eye problems that can affect vision such as detached retinas. About one-quarter of people with this condition have mild to moderate hearing loss.
Spondyloepiphyseal dysplasia congenita (abbreviated to SED more often than SDC) is a rare disorder of bone growth that results in dwarfism, characteristic skeletal abnormalities, and occasionally problems with vision and hearing. The name of the condition indicates that it affects the bones of the spine (spondylo-) and the ends of bones (epiphyses), and that it is present from birth (congenital). The signs and symptoms of spondyloepiphyseal dysplasia congenita are similar to, but milder than, the related skeletal disorders achondrogenesis type 2 and hypochondrogenesis. Spondyloepiphyseal dysplasia congenita is a subtype of collagenopathy, types II and XI.
Recurrent seizures are the most recognizable feature of this syndrome and are most often the first sign of this syndrome. These syndromes are often ongoing and poorly responsive to anti-seizure medications. Most patients develop seizures the first few years of life, but the age of onset ranges from ages 1 to 17. Different types of seizure have been reported in this syndrome. The most common seizure type appears to be brief focal onset epileptic seizures with impairment of consciousness and awareness, known as complex partial seizures. Other features you may see in these complex partial seizures include staring, oral automatisms, unspecified automatic behavior, involuntary motor movements and/or head turning.
Furthermore, many patients have subtle nighttime behavioral changes, such as stretching, rubbing, and turning resembling a nighttime awakening. However, electroencephalography (EEG) studies during these events show abnormal electrical seizure activity, indicating that nocturnal behavioral events are actually subtle nocturnal seizures or non-convulsive status epilepticus. Many of these patients experience their seizures only during sleep. They can have seemingly bizarre features as they originate from the frontal lobe of the brain. Often, individuals with ring chromosome 20 syndrome are initially found to have complex partial seizures of frontal lobe origin, though imaging studies do not show a corresponding structural brain abnormality. In certain patients, these seizures may secondarily generalized.
Individuals from the ages of 0–17 years should be considered for ring 20 chromosome analysis if they have: predominantly complex partial seizures, medically refractory cryptogenic epilepsy, Lennox-Gastaut-like features with no cause identified, frequent subtle nocturnal seizures, an EEG showing prolonged high voltage frontally dominant slowing intermixed with spikes or sharp waves, an EEG showing overlapping features of continuous slow spike and wave discharges in sleep (CSWS) and electrical status epilepticus in sleep (ESES), and/or subsequent cognitive impairment/learning difficulties/mild retardation.These patients will typically have a normal childhood development until onset of epilepsy and lack evidence of dysmorphism or other congenital malformations.
MCAS is a condition that affects multiple systems, generally in an inflammatory manner. Symptoms typically wax and wane over time, varying in severity and duration. Many signs and symptoms are the same as those for mastocytosis, because both conditions result in too many mediators released by mast cells. It has many overlapping characteristics with recurrent idiopathic anaphylaxis, although there are distinguishing symptoms, specifically hives and angioedema.
Common symptoms include:
- "Dermatological"
- flushing
- easy bruising
- either a reddish or a pale complexion
- itchiness
- "Cardiovascular"
- lightheadedness, dizziness, presyncope, syncope
- "Gastrointestinal"
- diarrhea, cramping, intestinal discomfort
- nausea, vomiting
- swallowing, throat tightness
- "Psychological & Neurological"
- brain fog, short term memory dysfunction, difficulty with recalling words
- headaches, migraines
- "Respiratory"
- congestion, coughing, wheezing
- "Vision/Eyes"
- ocular discomfort, conjunctivitis
- "Constitutional"
- general fatigue and malaise
- food, drug, and chemical intolerances (especially fragrances)
- sense of being cold all the time
- "Musculoskeletal"
- osteoporosis and osteopenia (including young patients)
- Anaphylaxis "If too many mediators are spilt into a patient's system, they may also experience anaphylaxis, which primarily includes: difficulty breathing, itchy hives, flushing or pale skin, feeling of warmth, weak and rapid pulse, nausea, vomiting, diarrhea, dizziness and fainting."
Symptoms can be caused or worsened by triggers, which vary widely and are patient-specific.
Common triggers include:
- specific foods and drinks (especially alcohol, and high-histamine content foods)
- temperature extremes
- airborne smells including perfumes or smoke
- exercise or exertion
- emotional stress
- hormonal changes, particularly during adolescence, pregnancy and women's menstrual cycles
Ring chromosome 20, ring-shaped chromosome 20 or r(20) syndrome is a rare human chromosome abnormality where the two arms of chromosome 20 fuse to form a ring chromosome. The syndrome is associated with epileptic seizures, behaviour disorders and mental retardation.
When not all cells contain a ring chromosome 20, the individual suffers from ring 20 chromosomal mosaicism.Ring Chromosome 20 syndrome is thought to be an underdiagnosed condition. Since chromosomal analysis or karyotype testing is not a routine investigation for patients with epilepsy, the diagnosis of ring chromosome 20 syndrome is typically delayed or unrecognized.
The symptoms of LSD vary, depending on the particular disorder and other variables such as the age of onset, and can be mild to severe. They can include developmental delay, movement disorders, seizures, dementia, deafness, and/or blindness. Some people with LSDhave enlarged livers (hepatomegaly) and enlarged spleens (splenomegaly), pulmonary and cardiac problems, and bones that grow abnormally.
Malpuech facial clefting syndrome, also called Malpuech syndrome or Gypsy type facial clefting syndrome, is a rare congenital syndrome. It is characterized by facial clefting (any type of cleft in the bones and tissues of the face, including a cleft lip and palate), a appendage (a "human tail"), growth deficiency, intellectual and developmental disability, and abnormalities of the renal system (kidneys) and the male genitalia. Abnormalities of the heart, and other skeletal malformations may also be present. The syndrome was initially described by Guilliaume Malpuech and associates in 1983. It is thought to be genetically related to Juberg-Hayward syndrome. Malpuech syndrome has also been considered as part of a spectrum of congenital genetic disorders associated with similar facial, urogenital and skeletal anomalies. Termed "3MC syndrome", this proposed spectrum includes Malpuech, Michels and Mingarelli-Carnevale (OSA) syndromes. Mutations in the "COLLEC11" and "MASP1" genes are believed to be a cause of these syndromes. The incidence of Malpuech syndrome is unknown. The pattern of inheritance is autosomal recessive, which means a defective (mutated) gene associated with the syndrome is located on an autosome, and the syndrome occurs when two copies of this defective gene are inherited.
KWE is characterized by a number of anomalies affecting the skin. Erythema causes redness of the skin, which is generally associated with inflammation and irritation. Including erythema and hyperkeratosis (thickening of the stratum corneum), naturally occurring keratolytic peeling and scaling, with increased manifestation in winter, are prevailing features of the disorder.
Erythema in KWE has been attributed to necrobiosis (cellular death) within the malpighian layer (the innermost layer of the epidermis). Peeling and scaling are caused by spreading dissection of the stratum corneum, correlating to the underlying necrobiosis.
The effects of KWE appear intermittently as patches on the skin of the palms and soles, with these patches appearing on the limbs, buttocks and torso in severe cases. Facial lesions of this type have also been reported with the disorder, though this is considered to be an extremely rare occurrence.
Onset and cyclical recurrence of KWE have shown to be associated with the arrival of winter, or winter-like weather. Worsening of symptoms during this time may be considered as an indicator of recurrent onset in patients known to have the disorder, and age of initial onset can be from early childhood to young adulthood, with attenuation of symptoms sometimes happening after age 30. Patients first exhibiting the disorder at a younger age may also experience worsened symptoms. Currently, no specific correlating factor or reason for winter-related manifestation has been established, though the coldness and dryer air common to winter conditions may be suspect. Winter onset is, however, considered to be a distinguishing feature of KWE among other erythematic skin disorders.
When peeling of skin occurs, the newly exposed layer of skin underneath is moist, raw and very sensitive. While this may result in minor discomfort and inconvenience, in severe cases of KWE where large areas of raw skin are present, it is often life-altering and debilitating.
KWE is inherited in an autosomal dominant manner. This means that the defective gene responsible for the disorder is located on an autosome (chromosome 8 is an autosome), and one copy of the defective gene is sufficient to cause the disorder when inherited from a parent who also has the disorder.
KWE can begin as a spontaneous mutation, first appearing in an individual with no previous family history of the disorder. This may be due to a genetic predisposition for the disorder, possibly connected to the Oudtshoorn ancestral line.
Malpuech syndrome is congenital, being apparent at birth. It is characterized by a feature known as facial clefting. Observed and noted in the initial description of the syndrome as a cleft lip and palate, facial clefting is identified by clefts in the bones, muscles and tissues of the face, including the lips and palate. The forms of cleft lip and palate typically seen with Malpuech syndrome are midline (down the middle of the lip and palate) or bilateral (affecting both sides of the mouth and palate). Facial clefting generally encompasses a wide range of severity, ranging from minor anomalies such as a (split) uvula, to a cleft lip and palate, to major developmental and structural defects of the facial bones and soft tissues. Clefting of the lip and palate occurs during embryogenesis. Additional facial and ortho-dental anomalies that have been described with the syndrome include: hypertelorism (unusually wide-set eyes, sometimes reported as telecanthus), narrow palpebral fissures (the separation between the upper and lower eyelids) and ptosis (drooping) of the eyelids, frontal bossing (prominent eyebrow ridge) with synophris, highly arched eyebrows, wide nasal root and a flattened nasal tip, malar hypoplasia (underdeveloped upper cheek bone), micrognathia (an undersized lower jaw), and prominent incisors. Auditory anomalies include an enlarged ear ridge, and hearing impairment associated with congenital otitis media (or "glue ear", inflammation of the middle ear) and sensorineural hearing loss.
Another feature identified with Malpuech syndrome is a caudal appendage. A caudal appendage is a congenital outgrowth stemming from the coccyx (tailbone). Present in many non-human animal species as a typical tail, this feature when seen in an infant has been described as a "human tail". This was observed by Guion-Almeida (1995) in three individuals from Brazil. The appendage on X-rays variously appeared as a prominent protrusion of the coccyx. On a physical examination, the appendage resembles a nodule-like stub of an animal tail.
Deficiencies such as mental retardation, learning disability, growth retardation and developmental delay are common. Psychiatric manifestations that have been reported with the syndrome include psychotic behavior, obsessive–compulsive disorder, loss of inhibition, hyperactivity, aggression, fear of physical contact, and compulsive actions like echolalia (repeating the words spoken by another person). Neuromuscular tics have also been noted.
Urogenital abnormalities, or those affecting the urinary and reproductive systems, are common with the syndrome. Malpuech et al. (1983) and Kerstjens-Frederikse et al. (2005) reported variously in affected males a micropenis, hypospadias (a congenital mislocation of the urinary meatus), cryptorchidism ( or undescended testes), bifid (split) and underdeveloped scrotum, and an obstructive urethral valve. An affected boy was also reported by Reardon et al. (2001) with left renal agenesis, an enlarged and downwardly displaced right kidney, cryptorchidism and a shawl scrotum. Other malformations that have been noted with the syndrome are omphalocele and an umbilical hernia.
Congenital abnormalities of the heart have also been observed with Malpuech syndrome. From a healthy Japanese couple, Chinen and Naritomi (1995) described the sixth child who had features consistent with the disorder. This two-month-old male infant was also affected by cardiac anomalies including patent ductus arteriosus (PDA) and ventricular septal defect. The opening in the ductus arteriosus associated with PDA had been surgically repaired in the infant at 38 days of age. A number of minor skeletal aberrations were also reported in the infant, including wormian bones at the lambdoid sutures.
Keratolytic Winter erythema ( Oudtshoorn disease and Oudtshoorn skin, }is a rare autosomal dominant skin disease of unknown cause which causes redness and peeling of the skin on the palms and soles. Onset, increased prominence and severity usually occurs during winter. It is a type of genodermatosis.
The name "Oudtshoorn skin" derives from the town of Oudtshoorn in the Western Cape province of South Africa, where the disorder was first described. It is one of several genetic disorders known to be highly prevalent among the Afrikaner population.
Mast cell activation syndrome (MCAS) is one type of mast cell activation disorder (MCAD), and is an immunological condition in which mast cells inappropriately and excessively release chemical mediators, resulting in a range of chronic symptoms, sometimes including anaphylaxis or near-anaphylaxis attacks. Primary symptoms include cardiovascular, dermatological, gastrointestinal, neurological and respiratory problems.
Unlike mastocytosis, another type of MCAD, where patients have an abnormally increased number of mast cells, patients with MCAS have a normal number of mast cells that do not function properly and are defined as "hyperresponsive". MCAS is still a poorly understood condition and is a current topic of research.
MCAS is often found in patients with Ehlers–Danlos syndrome (EDS) and postural orthostatic tachycardia syndrome (POTS). It is also found in subset groups of patients with common variable immunodeficiency (CVID) and Lyme disease.
Lysosomal storage diseases (LSDs; ) are a group of about 50 rare inherited metabolic disorders that result from defects in lysosomal function. Lysosomes are sacs of enzymes within cells that digest large molecules and pass the fragments on to other parts of the cell for recycling. This process requires several critical enzymes. If one of these enzymes is defective, because of a mutation, the large molecules accumulate within the cell, eventually killing it.
Lysosomal storage disorders are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of lipids, glycoproteins (sugar-containing proteins), or so-called mucopolysaccharides. Individually, LSDs occur with incidences of less than 1:100,000; however, as a group, the incidence is about 1:5,000 - 1:10,000. Most of these disorders are autosomal recessively inherited such as Niemann–Pick disease, type C, but a few are X-linked recessively inherited, such as Fabry disease and Hunter syndrome (MPS II).
The lysosome is commonly referred to as the cell's recycling center because it processes unwanted material into substances that the cell can use. Lysosomes break down this unwanted matter by enzymes, highly specialized proteins essential for survival. Lysosomal disorders are usually triggered when a particular enzyme exists in too small an amount or is missing altogether. When this happens, substances accumulate in the cell. In other words, when the lysosome does not function normally, excess products destined for breakdown and recycling are stored in the cell.
Like other genetic disorders, individuals inherit lysosomal storage diseases from their parents. Although each disorder results from different gene mutations that translate into a deficiency in enzyme activity, they all share a common biochemical characteristic – all lysosomal disorders originate from an abnormal accumulation of substances inside the lysosome.
LSDs affect mostly children and they often die at a young and unpredictable age, many within a few months or years of birth. Many other children die of this disease following years of suffering from various symptoms of their particular disorder.
Spinocerebellar ataxia (SCA) is one of a group of genetic disorders characterized by slowly progressive incoordination of gait and is often associated with poor coordination of hands, speech, and eye movements. A review of different clinical features among SCA subtypes was recently published describing the frequency of non-cerebellar features, like parkinsonism, chorea, pyramidalism, cognitive impairment, peripheral neuropathy, seizures, among others. As with other forms of ataxia, SCA frequently results in atrophy of the cerebellum, loss of fine coordination of muscle movements leading to unsteady and clumsy motion, and other symptoms.
The symptoms of an ataxia vary with the specific type and with the individual patient. In general, a person with ataxia retains full mental capacity but progressively loses physical control.
Separation anxiety disorder
- excessive stress when separated from home or family
- fear of being alone
- refusal to sleep alone
- clinginess
- excessive worry about safety
- excessive worry about getting lost
- frequent medical complaints with no cause
- refusal to go to school
Selective mutism
- unable to speak in certain social situations, even though they are comfortable speaking at home or with friends
- difficulty maintaining eye contact
- may have blank facial expressions
- stiff body movements
- may have a worrisome personality
- may be incredibly sensitive to sound
- difficulty with verbal and non-verbal expression
- may appear shy, when in reality, they have a fear of people.
Reactive attachment disorder of infancy or early childhood
- withdrawing from others
- aggressive attitude towards peers
- awkwardness or discomfort
- watching others but not engaging in social interaction
Stereotypic movement disorder
- head banging
- nail biting
- hitting or biting oneself
- hand waving or shaking
- rocking back and forth
Episodic dyscontrol syndrome (EDS, or sometimes just dyscontrol), is a pattern of abnormal, episodic, and frequently violent and uncontrollable social behavior in the absence of significant provocation; it can result from limbic system diseases, disorders of the temporal lobe, or abuse of alcohol or other psychoactive substances.
EDS may affect children or adults.
Children with a tic disorder may exhibit the following symptoms:
- overwhelming urge to make movement
- jerking of arms
- clenching of fists
- excessive eye blinking
- shrugging of shoulders
- kicking
- raising eyebrows
- flaring of nostrils
- production of repetitive noises such as grunting, clicking, moaning, snorting, squealing, or throat clearing
Tics should be distinguished from other causes of tourettism, stereotypies, chorea, dyskinesias, myoclonus, and obsessive-compulsive disorder.
Symptoms reported by patients forced into a 24-hour schedule are similar to those of sleep deprivation and can include:
- Apraxia including ideational apraxia, ideomotor apraxia, kinetic apraxia, limb apraxia, verbal apraxia
- Cognitive dysfunction
- Difficulties concentrating
- Confusion
- Depressed mood
- Diarrhea
- Extreme nausea
- Extreme fatigue
- Hair loss
- Headaches
- Impaired balance
- Photosensitivity
- Joint pain
- Loss of muscle coordination (ataxia)
- Menstrual irregularities
- Muscle pain
- Suicidal thoughts
- Weight gain
- Hallucinations
Joint hypermobility syndrome shares symptoms with other conditions such as Marfan syndrome, Ehlers-Danlos Syndrome, and osteogenesis imperfecta. Experts in connective tissue disorders formally agreed that severe forms of Hypermobility Syndrome and mild forms of Ehlers-Danlos Syndrome Hypermobility Type are the same disorder.[""]
Generalized hypermobility is a common feature in all these hereditary connective tissue disorders and many features overlap, but often features are present that enable differentiating these disorders.
The inheritance pattern of Ehlers-Danlos syndrome varies by type. The arthrochalasia, classic, hypermobility and vascular forms usually have an autosomal dominant pattern of inheritance. Autosomal dominant inheritance occurs when one copy of a gene in each cell is sufficient to cause a disorder. In some cases, an affected person inherits the mutation from one affected parent. Other cases result from new (sporadic) gene mutations. Such cases can occur in people with no history of the disorder in their family.
The dermatosparaxis and kyphoscoliosis types of EDS and some cases of the classic and hypermobility forms, are inherited in an autosomal recessive pattern. In autosomal recessive inheritance, two copies of the gene in each cell are altered. Most often, both parents of an individual with an autosomal recessive disorder are carriers of one copy of the altered gene but do not show signs and symptoms of the disorder.