Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
People with ODD syndrome often have a characteristic appearance. Visible features of the condition include:
- small teeth that are prone to caries because of underdeveloped tooth enamel;
- a long, thin nose;
- unusually small eyes; and
- type III syndactyly of the fourth and fifth fingers.
Iris atrophy and glaucoma are more common than average. The size of the eyes often interferes with learning to read; special eyeglasses may be required. Hair may be fine, thin, dry, or fragile; in some families, it is curly.
Neurologic abnormalities may be seen in adults. The neurologic changes may appear earlier in each subsequent generation and can include abnormal white matter, conductive deafness, and various kinds of paresis, including ataxia, spastic paraplegia, difficulty controlling the eyes, and bladder and bowel disturbances.
Iridogoniodysgenesis, dominant type (type 1, IRID1) refers to a spectrum of diseases characterized by malformations of the irido-corneal angle of the anterior chamber of the eye. Iridogoniodysgenesis is the result of abnormal migration or terminal induction of neural crest cells. These cells lead to formation of most of the anterior segment structures of the eye (corneal stroma & endothelium, iris stroma, trabeculum).
The incidence of this condition is <1 per million population. It is found only in females as all affected males die before birth. Teeth with large roots (radiculomegaly), heart defects, and small eyes (microphthalmia) are the characteristic triad found in this syndrome.
Typical features of the condition include:
- Face
- Deep set eyes
- Broad nasal tip divided by a cleft
- Eyes
- Microphthalmia (small eyes)
- Early cataracts
- Glaucoma
- Teeth
- Radiculomegaly (teeth with very large roots)
- Delayed loss of primary teeth
- Missing (oligodontia) or abnormally small teeth
- Misaligned teeth
- Defective tooth enamel.
- Heart defects
- Atrial and/or ventricular defects
- Mitral valve prolapse
- Mild mental retardation and conductive or sensorineural hearing loss may occur.
Axenfeld syndrome (also known as Axenfeld-Rieger syndrome or Hagedoom syndrome) is a rare autosomal dominant disorder, which affects the development of the teeth, eyes, and abdominal region.
Weill–Marchesani syndrome is a rare genetic disorder characterized by short stature; an unusually short, broad head (brachycephaly) and other facial abnormalities; hand defects, including unusually short fingers (brachydactyly); and distinctive eye (ocular) abnormalities. It was named after ophthalmologists Georges Weill (1866-1952) and Oswald Marchesani (1900-1952) who first described it in 1932 and 1939, respectively.
The eye manifestations typically include unusually small, round lenses of the eyes (spherophakia), which may be prone to dislocating (ectopia lentis), as well as other ocular defects. Due to such abnormalities, affected individuals may have varying degrees of visual impairment, ranging from nearsightedness myopia to blindness. Researchers suggest that Weill–Marchesani syndrome may have autosomal recessive or autosomal dominant inheritance.
Oculodentodigital syndrome (ODD syndrome) is an extremely rare genetic condition that typically results in small eyes, underdeveloped teeth, and syndactyly and malformation of the fourth and fifth fingers. It has also been called oculo-dento-digital syndrome, oculodentodigital dysplasia (ODDD), and oculodentoosseous dysplasia (ODOD). It is considered a kind of ectodermal dysplasia.
The optic nerve hypoplasia is generally manifested by nystagmus (involuntary eye movements, often side-to-side) and a smaller-than-usual optic disc. The degree of visual impairment is variable, and ranges from normal vision to complete blindness. When nystagmus develops, it typically appears by 1–8 months of age, and usually indicates that there will be a significant degree of visual impairment, but the severity is difficult to predict in infancy. Although there are many measures to compensate for visual impairment, there are few treatments available to induce normal optic nerve function.
Diagnosis is made when several characteristic clinical signs are observed. There is no single test to confirm the presence of Weill–Marchesani syndrome. Exploring family history or examining other family members may prove helpful in confirming this diagnosis.
Because collagen plays an important role in the development of the body, people with Kniest Dysplasia will typically have their first symptoms at birth. These symptoms can include:.
- Musculoskeletal Problems
- Short limbs
- Shortened body trunk
- Flattened bones in the spine
- kyphoscoliosis
- Scoliosis (Lateral curvature of the spine)
- Early development of arthritis
- Respiratory problems
- Respiratory tract infection
- Difficulty breathing
- Eye problems
- Severe myopia (near-sightedness)
- Cataract (cloudiness in the lens of the eye)
- Hearing problems
- progressive hearing loss
- ear infections
Most symptoms are chronic and will continue to worsen as the individual ages. It is essential to have regular checkups with general doctors, orthopedist, ophthalmologists, and/or otorhinolaryngologists. This will help to detect whether there are any changes that could cause concern.
The degree of pituitary deficiency is also variable, and ranges from normal function, to deficiency of both anterior and posterior hormones. It is often unclear if the hypopituitarism is due to a primary pituitary dysfunction or is secondary to a hypothalamic dysfunction. Hypopituitarism in this syndrome is most often manifested by growth hormone deficiency. If severe, it can lead to diagnosis in the first days of life by causing hypoglycemia, jaundice, and micropenis (if a boy). The cause of the jaundice is unknown, and an unusual aspect of it (compared to most neonatal jaundice) is that it can be largely a conjugated (direct) hyperbilirubinemia suggestive of obstructive liver disease. It typically resolves over several weeks once hormone replacement is begun. All of the pituitary hormones can be replaced, and this is the treatment for deficiencies. Septo-optic dysplasia is one of the most common forms of congenital growth hormone deficiency.
This is transmitted through an autosomal dominant pattern with complete penetrance and variable expressivity.
Lenz microphthalmia syndrome (or LMS) is a very rare inherited disorder characterized by abnormal smallness of one or both eyes (microphthalmos) sometimes with droopy eyelids (blepharoptosis), resulting in visual impairment or blindness. Eye problems may include coloboma, microcornea, and glaucoma. Some affected infants may have complete absence of the eyes (anophthalmia). Most affected infants have developmental delay and intellectual disability, ranging from mild to severe. Other physical abnormalities associated with this disorder can include an unusually small head (microcephaly), and malformations of the teeth, ears, fingers or toes, skeleton, and genitourinary system. The range and severity of findings vary from case to case. Formal diagnosis criteria do not exist.
Lenz microphthalmia syndrome is inherited as an X-linked recessive genetic trait and is fully expressed in males only. Females who carry one copy of the disease gene (heterozygotes) may exhibit some of the symptoms associated with the disorder, such as an abnormally small head (microcephaly), short stature, or malformations of the fingers or toes. Molecular genetic testing of BCOR (MCOPS2 locus), the only gene known to be associated with Lenz microphthalmia syndrome, is available on a clinical basis. One additional locus on the X chromosome (MCOPS1) is known to be associated with LMS.
Lenz microphthalmia syndrome is also known as LMS, Lenz syndrome, Lenz dysplasia, Lenz dysmorphogenetic syndrome, or microphthalmia with multiple associated anomalies (MAA: OMIM 309800). It is named after Widukind Lenz, a German geneticist and dysmorphologist.
A somewhat similar X-linked syndrome of microphthalmia, called oculofaciocardiodental syndrome (OFCD) is associated with mutations in BCOR. OFCD syndrome is inherited in an X-linked dominant pattern with male lethality.
Congenital stromal corneal dystrophy (CSCD), also called Witschel dystrophy, is an extremely rare, autosomal dominant form of corneal dystrophy. Only 4 families have been reported to have the disease by 2009. The main features of the disease are numerous opaque flaky or feathery areas of clouding in the stroma that multiply with age and eventually preclude visibility of the endothelium. Strabismus or primary open angle glaucoma was noted in some of the patients. Thickness of the cornea stays the same, Descemet's membrane and endothelium are relatively unaffected, but the fibrills of collagen that constitute stromal lamellae are reduced in diameter and lamellae themselves are packed significantly more tightly.
People with spondyloepiphyseal dysplasia are short-statured from birth, with a very short trunk and neck and shortened limbs. Their hands and feet, however, are usually average-sized. This type of dwarfism is characterized by a normal spinal column length relative to the femur bone. Adult height ranges from 0.9 meters (35 inches) to just over 1.4 meters (55 inches). Curvature of the spine (kyphoscoliosis and lordosis) progresses during childhood and can cause problems with breathing. Changes in the spinal bones (vertebrae) in the neck may also increase the risk of spinal cord damage. Other skeletal signs include flattened vertebrae (platyspondyly), a hip joint deformity in which the upper leg bones turn inward (coxa vara), and an inward- and downward-turning foot (called clubfoot). Decreased joint mobility and arthritis often develop early in life. Medical texts often state a mild and variable change to facial features, including cheekbones close to the nose appearing flattened, although this appears to be unfounded. Some infants are born with an opening in the roof of the mouth, which is called a cleft palate. Severe nearsightedness (high myopia) is sometimes present, as are other eye problems that can affect vision such as detached retinas. About one-quarter of people with this condition have mild to moderate hearing loss.
Microcoria is a congenital disease in which the pupils of the subject are narrower than 2 mm in diameter. Microcoria is associated with juvenile-onset glaucoma. It is also associated with Pierson syndrome chararacterized by microcoria and congenital nephrotic syndrome. The defect is in the Laminin beta 2 gene on chromosome 3p21 which encodes a protein essential to the glomerular basement membrane.
It is also part of the known manifestations of a born infant to a mother suffering from uncontrolled hyperglycemia. Other symptoms include transposition of great vessels, respiratory distress secondary to surfactant defect, sacral agensis, jitteriness, irritability, and lethargy due to rebound fetal hypoglycemia. Congenital microcoria is an autosomal dominant trait. However, it can also occur sporadically.
Although most recognized for its correlation with the onset of glaucoma, the malformation is not limited to the eye, as Axenfeld syndrome when associated with the PITX2 genetic mutation usually presents congenital malformations of the face, teeth, and skeletal system.
The most characteristic feature affecting the eye is a distinct corneal posterior arcuate ring, known as an "embryotoxon". The iris is commonly adherent to the Schwalbe's line (posterior surface of the cornea).
Diagnosis
One of the three known genetic mutations which cause Rieger Syndrome can be identified through genetic samples analysis. About 40% of Axenfeld-Rieger sufferers have displayed mutations in genes PITX2, FOXC1, and PAX6. The difference between Type 1, 2, and 3 Axenfeld Syndrome is the genetic cause, all three types display the same symptoms and abnormalities.
The OMIM classification is as follows:
Detection of any of these mutations can give patients a clear diagnosis and prenatal procedures such as preimplantation genetic diagnosis, Chorionic villus sampling and Amniocentesis can be offered to patients and prospective parents.
Sturge–Weber syndrome is usually manifested at birth by a port-wine stain on the forehead and upper eyelid of one side of the face, or the whole face. The birthmark can vary in color from light pink to deep purple and is caused by an overabundance of capillaries around the ophthalmic branch of the trigeminal nerve, just under the surface of the face. There is also malformation of blood vessels in the pia mater overlying the brain on the same side of the head as the birthmark. This causes calcification of tissue and loss of nerve cells in the cerebral cortex.
Neurological symptoms include seizures that begin in infancy and may worsen with age. Convulsions usually happen on the side of the body opposite the birthmark which vary in severity. There may also be muscle weakness on the side of the body opposite the birthmark.
Some children will have developmental delays and cognitive delays; about 50% will have glaucoma (optic neuropathy often associated with increased intraocular pressure), which can be present at birth or develop later. Glaucoma can be expressed as leukocoria, which should include also further evaluation for retinoblastoma. Increased pressure within the eye can cause the eyeball to enlarge and bulge out of its socket (buphthalmos).
Sturge–Weber syndrome rarely affects other body organs.
Most cases of retinal dysplasia in dogs are hereditary. It can involve one or both retinas. Retinal dysplasia can be focal, multifocal, geographic, or accompanied by retinal detachment. Focal and multifocal retinal dysplasia appears as streaks and dots in the central retina. Geographic retinal dysplasia appears as an irregular or horseshoe-shaped area of mixed hyper or hyporeflectivity in the central retina. Retinal detachment occurs with complete retinal dysplasia, and is accompanied by blindness in that eye. Cataracts or glaucoma can also occur secondary to retinal dysplasia. Other causes of retinal dysplasia in dogs include infection with canine adenovirus or canine herpesvirus, or radiation of the eye in newborns.
The typical infant who has congenital glaucoma usually is initially referred to an ophthalmologist because of apparent corneal edema. The commonly described triad of epiphora (excessive tearing), blepharospasm and photophobia may be missed until the corneal edema becomes apparent.
This condition is also characterized by an unusual clubfoot with twisting of the metatarsals, inward- and upward-turning foot, tarsus varus, and inversion adducted appearances. Furthermore, they classically present with scoliosis (progressive curvature of the spine), and unusually positioned thumbs (hitchhiker thumbs). About half of infants with diastrophic dysplasia are born with an opening in the roof of the mouth called a cleft palate. Swelling of the external ears is also common in newborns and can lead to thickened, deformed ears.
The signs and symptoms of diastrophic dysplasia are similar to those of another skeletal disorder called atelosteogenesis, type 2; however diastrophic dysplasia tends to be less severe.
Oculofaciocardiodental syndrome is a rare X linked genetic disorder.
Individuals affected by ischiopatellar dysplasia commonly have abnormalities of the patella and pelvic girdle, such as absent or delayed patellar and ischial ossification as well as infra-acetabular axe-cut notches. Patellae are typically absent or small in these individuals, when patellae are present they are small and laterally displaced or dislocated. In addition, abnormalities in other parts of their skeleton and dysmorphic features are common in those affected. Other features that have been identified in patients with ischiopatellar dysplasia include foot anomalies, specifically flat feet (pes planus), syndactylism of the toes, short fourth and fifth toes, and a large gap between the first and second toes, femur anomalies, cleft palate, and craniofacial dysmorphisms.
Patients with this syndrome are shorter than the average person and may not develop hair in many places, including in the facial, leg and pubic areas. Patients also have eye problems including reduced eye size, bilateral cataracts and glaucoma.
It can be associated with sleep apnea.
It can complicate intubation.
Sturge–Weber syndrome or Sturge–Weber–Krabbe disease, sometimes referred to as encephalotrigeminal angiomatosis, is a rare congenital neurological and skin disorder. It is one of the phakomatoses and is often associated with port-wine stains of the face, glaucoma, seizures, mental retardation, and ipsilateral leptomeningeal angioma (cerebral malformations and tumors). Sturge Weber Syndrome can be classified into three different types. Type 1 includes facial and leptomeningeal angiomas as well as the possibility of glaucoma or choroidal lesions. Normally, only one side of the brain is affected. This type is the most common. Type 2 involvement includes a facial angioma (port wine stain) with a possibility of glaucoma developing. There is not any evidence of brain involvement. Symptoms can show at any time beyond the initial diagnosis of the facial angioma. The symptoms can include glaucoma, cerebral blood flow abnormalities and headaches. More research is needed on this type of Sturge Weber Syndrome. Type 3 has leptomeningeal angioma involvement exclusively. The facial angioma is absent and glaucoma rarely occurs. This type is only diagnosed via brain scan.
Sturge-Weber is an embryonal developmental anomaly resulting from errors in mesodermal and ectodermal development. Unlike other neurocutaneous disorders (phakomatoses), Sturge-Weber occurs sporadically (i.e., does not have a hereditary cause). It is caused by a somatic activating mutation occurring in the GNAQ gene. Radiological findings will show tram track calcifications on CT, bilaterally.
Kniest Dysplasia is a rare form of dwarfism caused by a mutation in the COL2A1 gene on chromosome 12. The COL2A1 gene is responsible for producing type II collagen. The mutation of COL2A1 gene leads to abnormal skeletal growth and problems with hearing and vision. What characterizes kniest dysplasia from other type II Osteochondrodysplasia is the level of severity and the dumb-bell shape of shortened long tubular bones. This condition was first diagnosed by Dr. Wilhelm Kniest in 1952. Dr. Kniest noticed that his 50 year old patient was having difficulties with restricted joint mobility. The patient had a short stature and was also suffering from blindness. Upon analysis of the patient's DNA, Dr. Kniest discovered that a mutation had occurred at a splice site of the COL2A1 gene. This condition is very rare and occurs less than 1 in 1,000,000 people. Males and females have equal chances of having this condition. Currently, there is no cure for kniest dysplasia. Alternative names for Kniest Dysplasia can include Kniest Syndrome, Swiss Cheese Cartilage Syndrome, Kniest Chondrodystrophy, or Metatrophic Dwarfism Type II.