Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Duarte galactosemia (also known as Duarte variant galactosemia, DG, or biochemical variant galactosemia) is an inherited condition associated with diminished ability to metabolize galactose due to a partial deficiency of the enzyme galactose-1-phosphate uridylyltransferase. Duarte galactosemia (DG) is estimated to affect close to one in 4,000 infants born in the United States. DG Is considered by most healthcare professionals to be clinically mild. It differs from classic galactosemia in that patients with Duarte galactosemia have partial GALT deficiency whereas patients with classic galactosemia have complete, or almost complete, GALT deficiency.
DG, and the possible outcomes associated with this condition, are currently not well understood. Due to regional variations in newborn screening (NBS) protocols, some infants with DG are identified by NBS but others are not. In addition, of the infants who are diagnosed, most are clinically healthy as babies and toddlers, resulting in early discharge from follow up. Many healthcare professionals believe that DG does not negatively impact development. However, some reports have indicated that children with DG may be at increased risk for some developmental problems.
In undiagnosed and untreated children, the accumulation of precursor metabolites due to the deficient activity of galactose 1-phosphate uridylyltransferase (GALT) can lead to feeding problems, failure to thrive, liver damage, bleeding, and infections. The first presenting symptom in an infant is often prolonged jaundice. Without intervention in the form of galactose restriction, infants can develop hyperammonemia and sepsis, possibly leading to shock. The accumulation of galactitol and subsequent osmotic swelling can lead to cataracts which are similar to those seen in galactokinase deficiency. Long-term consequences of continued galactose intake can include developmental delay, developmental verbal dyspraxia, and motor abnormalities. Galactosemic females frequently suffer from ovarian failure, regardless of treatment in the form of galactose restriction.
Infants with DG show an impaired ability to metabolize galactose, a sugar found at high levels in breast milk, milk formula, and most dairy products. Galactose is found at low levels in many fruits, vegetables, and other foods. Galactose is also produced at low levels by the human body.
Infants with DG, who consume breast milk or formula containing the milk sugar, lactose, are usually, but not always, asymptomatic. Infants who do show symptoms, such as jaundice, typically recover quickly when switched to a low-lactose diet, such as soy formula.
Galactosemia (British galactosaemia) is a rare genetic metabolic disorder that affects an individual's ability to metabolize the sugar galactose properly. Galactosemia follows an autosomal recessive mode of inheritance that confers a deficiency in an enzyme responsible for adequate galactose degradation.
Friedrich Goppert (1870–1927), a German physician, first described the disease in 1917, with its cause as a defect in galactose metabolism being identified by a group led by Herman Kalckar in 1956.
Its incidence is about 1 per 60,000 births for people of European ancestry. In other populations the incidence rate differs. Galactosaemia is about one hundred times more common (1:480 births) within the Irish Traveller population.
Galactose-1-phosphate uridylyltransferase deficiency, also called galactosemia type 1, classic galactosemia or GALT deficiency, is the most common type of galactosemia, an inborn error of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridylyltransferase. It is an autosomal recessive metabolic disorder that can cause liver disease and death if untreated. Treatment of galactosemia is most successful if initiated early and includes dietary restriction of lactose intake. Because early intervention is key, galactosemia is included in newborn screening programs in many areas. On initial screening, which often involves measuring the concentration of galactose in blood, classic galactosemia may be indistinguishable from other inborn errors of galactose metabolism, including galactokinase deficiency and galactose epimerase deficiency. Further analysis of metabolites and enzyme activities are needed to identify the specific metabolic error.
Symptoms of congenital Type III Galactosemia are apparent from birth, but vary in severity depending on whether the peripheral or generalized disease form is present. Symptoms may include:
- Infantile jaundice
- Infantile hypotonia
- Dysmorphic features
- Sensorineural hearing loss
- Impaired growth
- Cognitive deficiencies
- Depletion of cerebellar Purkinje cells
- Ovarian failure (POI) and hypertrophic hypergonadism
- Liver failure
- Renal failure
- Splenomegaly
- Cataracts
Studies of Type III galactosemia symptoms are mostly descriptive, and precise pathogenic mechanisms remain unknown. This is largely due to a lack of functional animal models of classic galactosemia. The recent development of a "Drosophila melanogaster" GALE mutant exhibiting galactosemic symptoms may yield a promising future animal model.
Infants are routinely screened for galactosemia in the United States, and the diagnosis is made while the person is still an infant. Infants affected by galactosemia typically present with symptoms of lethargy, vomiting, diarrhea, failure to thrive, and jaundice. None of these symptoms are specific to galactosemia, often leading to diagnostic delays. Luckily, most infants are diagnosed on newborn screening. If the family of the baby has a history of galactosemia, doctors can test prior to birth by taking a sample of fluid from around the fetus (amniocentesis) or from the placenta (chorionic villus sampling or CVS).
A galactosemia test is a blood test (from the heel of the infant) or urine test that checks for three enzymes that are needed to change galactose sugar that is found in milk and milk products into glucose, a sugar that the human body uses for energy. A person with galactosemia doesn't have one of these enzymes. This causes high levels of galactose in the blood or urine.
Galactosemia is normally first detected through newborn screening, or NBS. Affected children can have serious, irreversible effects or even die within days from birth. It is important that newborns be screened for metabolic disorders without delay. Galactosemia can even be detected through NBS before any ingestion of galactose-containing formula or breast milk.
Detection of the disorder through newborn screening (NBS) does not depend on protein or lactose ingestion, and, therefore, it should be identified on the first specimen unless the infant has been transfused. A specimen should be taken prior to transfusion. The enzyme is prone to damage if analysis of the sample is delayed or exposed to high temperatures. The routine NBS is accurate for detection of galactosemia. Two screening tests are used to screen infants affected with galactosemia—the Beutler's test and the Hill test. The Beutler's test screens for galactosemia by detecting the level of enzyme of the infant. Therefore, the ingestion of formula or breast milk does not affect the outcome of this part of the NBS, and the NBS is accurate for detecting galactosemia prior to any ingestion of galactose.
Duarte galactosemia is a milder form of classical galactosemia and usually has no long term side effects.
People with hypermethioninemia often do not show any symptoms. Some individuals with hypermethioninemia exhibit learning disabilities, mental retardation, and other neurological problems; delays in motor skills such as standing or walking; sluggishness; muscle weakness; liver problems; unusual facial features; and their breath, sweat, or urine may have a smell resembling boiled cabbage.
Hypermethioninemia can occur with other metabolic disorders, such as homocystinuria, tyrosinemia and galactosemia, which also involve the faulty breakdown of particular molecules. It can also result from liver disease or excessive dietary intake of methionine from consuming large amounts of protein or a methionine-enriched infant formula.
Galactose epimerase deficiency, also known as GALE deficiency, Galactosemia III and UDP-galactose-4-epimerase deficiency, is a rare, autosomal recessive form of galactosemia associated with a deficiency of the enzyme "galactose epimerase".
Galactokinase deficiency, also known as Galactosemia type 2 or GALK deficiency, is an autosomal recessive metabolic disorder marked by an accumulation of galactose and galactitol secondary to the decreased conversion of galactose to galactose-1-phosphate by galactokinase. The disorder is caused by mutations in the GALK1 gene, located on chromosome 17q24. Galactokinase catalyzes the first step of galactose phosphorylation in the Leloir pathway of intermediate metabolism. Galactokinase deficiency is one of the three inborn errors of metabolism that lead to hypergalactosemia. The disorder is inherited as an autosomal recessive trait. Unlike classic galactosemia, which is caused by deficiency of galactose-1-phosphate uridyltransferase, galactokinase deficiency does not present with severe manifestations in early infancy. Its major clinical symptom is the development of cataracts during the first weeks or months of life, as a result of the accumulation, in the lens, of galactitol, a product of an alternative route of galactose utilization. The development of early cataracts in homozygous affected infants is fully preventable through early diagnosis and treatment with a galactose-restricted diet. Some studies have suggested that, depending on milk consumption later in life, heterozygous carriers of galactokinase deficiency may be prone to presenile cataracts at 20–50 years of age.
Galactokinase deficiency is an autosomal recessive disorder, which means the defective gene responsible for the disorder is located on an autosome (chromosome 17 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
Unlike galactose-1-phosphate uridyltransferase deficiency, the symptoms of galactokinase deficiency are relatively mild. The only known symptom in affected children is the formation of cataracts, due to production of galactitol in the lens of the eye. Cataracts can present as a failure to develop a social smile and failure to visually track moving objects.
Hypermethioninemia is an excess of the amino acid methionine, in the blood. This condition can occur when methionine is not broken down properly in the body.
Inborn errors of carbohydrate metabolism are inborn error of metabolism that affect the catabolism and anabolism of carbohydrates.
An example is lactose intolerance.
Carbohydrates account for a major portion of the human diet. These carbohydrates are composed of three principal monosaccharides: glucose, fructose and galactose; in addition glycogen is the storage form of carbohydrates in humans. The failure to effectively use these molecules accounts for the majority of the inborn errors of human carbohydrates metabolism.
Fructose malabsorption is a digestive disorder in which absorption of fructose is impaired by deficient fructose carriers in the small intestine's enterocytes.
Three autosomal recessive disorders impair fructose metabolism in liver cells. The most common is caused by mutations in the gene encoding hepatic fructokinase, an enzyme that catalyzes the first step in the metabolism of dietary fructose. Inactivation of the hepatic fructokinase results in asymptomatic fructosuria.
Hereditary fructose intolerance (HFI) results in poor feeding, failure to thrive, hepatic and renal insufficiency, and death. HFI is caused by a deficiency of fructose 1,6-biphosphate aldolase in the liver, kidney cortex and small intestine. Infants and adults are asymptomatic unless they ingest fructose or sucrose.
Deficiency of hepatic fructose 1,6-biphosphate(FBPase) causes impaired gluconeogenesis, hypoglycemia and severe metabolic acidemia. If patients are adequately supported beyond childhood, growth and development appear to be normal.
Essential fructosuria is a clinically benign condition characterized by the incomplete metabolism of fructose in the liver, leading to its excretion in urine.
Crigler–Najjar syndrome or CNS is a rare inherited disorder affecting the metabolism of bilirubin, a chemical formed from the breakdown of the heme in red blood cells. The disorder results in a form of nonhemolytic jaundice, which results in high levels of unconjugated bilirubin and often leads to brain damage in infants. The disorder is inherited in an autosomal recessive manner.
This syndrome is divided into types I and II, with the latter sometimes called Arias syndrome. These two types, along with Gilbert's syndrome, Dubin–Johnson syndrome, and Rotor syndrome, make up the five known hereditary defects in bilirubin metabolism. Unlike Gilbert's syndrome, only a few cases of CNS are known.
Type II differs from type I in several aspects:
- Bilirubin levels are generally below 345 µmol/L [20 mg/dL] (range 100–430 µmol/L [6–24 mg/dL]; thus, overlap occurs), and some cases are only detected later in life.
- Because of lower serum bilirubin, kernicterus is rare in type II.
- Bile is pigmented, instead of pale in type I or dark as normal, and monoconjugates constitute the largest fraction of bile conjugates.
- UGT1A1 is present at reduced but detectable levels (typically <10% of normal), because of single base pair mutations.
- Therefore, treatment with phenobarbital is effective, generally with a decrease of at least 25% in serum bilirubin. In fact, this can be used, along with these other factors, to differentiate type I and II.
- The inheritance pattern of Crigler–Najjar syndrome type II has been difficult to determine, but is generally considered to be autosomal recessive.
The presence of presenile cataract, noticeable in galactosemic infants as young as a few days old, is highly associated with two distinct types of galactosemia: GALT deficiency and to a greater extent, GALK deficiency.
An impairment or deficiency in the enzyme, galactose-1-phosphate uridyltransferase (GALT), results in classic galactosemia, or Type I galactosemia. Classic galactosemia is a rare (1 in 47,000 live births), autosomal recessive disease that presents with symptoms soon after birth when a baby begins lactose ingestion. Symptoms include life-threatening illnesses such as jaundice, hepatosplenomegaly (enlarged spleen and liver), hypoglycemia, renal tubular dysfunction, muscle hypotonia (decreased tone and muscle strength), sepsis (presence of harmful bacteria and their toxins in tissues), and cataract among others. The prevalence of cataract among classic galactosemics is markedly less than among galactokinase-deficient patients due to the extremely high levels of galactitol found in the latter. Classic galactosemia patients typically exhibit urinary galactitol levels of only 98 to 800 mmol/mol creatine compared to normal levels of 2 to 78 mmol/mol creatine.
Galactokinase (GALK) deficiency, or Type II galactosemia, is also a rare (1 in 100,000 live births), autosomal recessive disease that leads to variable galactokinase activity levels: ranging from high GALK efficiency to undetectably-low GALK efficiency. The early onset of cataract is the main clinical manifestation of Type II galactosemics, most likely due to the high concentration of galactitol found in this population. GALK deficient patients exposed to high-galactose diets show extreme levels of galactitol in blood and urine. Studies on galactokinase-deficient patients have shown that nearly two-thirds of ingested galactose can be accounted for by galactose and galactitol levels in the urine. Urinary levels of galactitol in these subjects approach 2500 mmol/mol creatine as compared to 2 to 78 mmol/mol creatine in control patients.
A decrease in activity in the third major enzymes of galactose metabolism, UDP galactose-4'-epimerase (GALE), is the cause of Type III galactosemia. GALE deficiency is an extremely rare, autosomal recessive disease that appears to be most common among the Japanese population (1 in 23,000 live births among Japanese population). While the link between GALE deficiency and cataract prevalence seems to be ambiguous, experiments on this topic have been conducted. A recent 2000 study in Munich, Germany analyzed the activity levels of the GALE enzyme in various tissues and cells in patients with cataract. The experiment concluded that while patients with cataract seldom exhibited an acute decrease in GALE activity in blood cells, "the GALE activity in the lens of cataract patients was, on the other hand, significantly decreased". The study's results are depicted below. The extreme decrease in GALE activity in the lens of cataract patients seems to suggest an irrefutable connection between Type III galactosemia and cataract development.
A galactosemic cataract is cataract which is associated with the consequences of galactosemia.
Symptoms vary according to individuals' hydration level and sensitivity to the rate and/or magnitude of decline of their blood glucose concentration.
A crash is usually felt within four hours or less of heavy carbohydrate consumption. Symptoms of reactive hypoglycemia include:
- double vision or blurry vision
- unclear thinking
- insomnia
- heart palpitation or fibrillation
- fatigue
- dizziness
- light-headedness
- sweating
- headaches
- depression
- nervousness
- muscle twitches
- irritability
- tremors
- flushing
- craving sweets
- increased appetite
- rhinitis
- nausea, vomiting
- panic attack
- numbness/coldness in the extremities
- confusion
- irrationality
- bad temper
- paleness
- cold hands
- disorientation
- the need to sleep or 'crash'
- coma can be a result in severe untreated episodes
The majority of these symptoms, often correlated with feelings of hunger, mimic the effect of inadequate sugar intake as the biology of a crash is similar in itself to the body’s response to low blood sugar levels following periods of glucose deficiency.
Reactive hypoglycemia, postprandial hypoglycemia, or sugar crash is a term describing recurrent episodes of symptomatic hypoglycemia occurring within 4 hours after a high carbohydrate meal in people who do not have diabetes.
The condition is related to homeostatic systems utilised by the body to control blood sugar levels. It is variously described as a sense of tiredness, lethargy, irritation, or hangover, although the effects can be less if one has undertaken a lot of physical activity within the next few hours after consumption.
The alleged mechanism for the feeling of a crash is correlated with an abnormally rapid rise in blood glucose after eating. This normally leads to insulin secretion (known as an "insulin spike"), which in turn initiates rapid glucose uptake by tissues either accumulating it as glycogen or utilizing it for energy production. The consequent fall in blood glucose is indicated as the reason for the "sugar crash".. A deeper cause might be hysteresis effect of insulin action, i.e., the effect of insulin is still prominent even if both plasma glucose and insulin levels were already low, causing a plasma glucose level eventually much lower than the baseline level.
Sugar crashes are not to be confused with the after-effects of consuming large amounts of "protein", which produces fatigue akin to a sugar crash, but are instead the result of the body prioritising the digestion of ingested food.
The prevalence of this condition is difficult to ascertain because a number of stricter or looser definitions have been used. It is recommended that the term reactive hypoglycemia be reserved for the pattern of postprandial hypoglycemia which meets the Whipple criteria (symptoms correspond to measurably low glucose and are relieved by raising the glucose), and that the term idiopathic postprandial syndrome be used for similar patterns of symptoms where abnormally low glucose levels at the time of symptoms cannot be documented.
To assist diagnosis, a doctor can order an HbA1c test, which measures the blood sugar average over the two or three months before the test. The more specific 6-hour glucose tolerance test can be used to chart changes in the patient's blood sugar levels before ingestion of a special glucose drink and at regular intervals during the six hours following to see if an unusual rise or drop in blood glucose levels occurs.
According to the U.S. National Institute of Health (NIH), a blood glucose level below 70 mg/dL (3.9 mmol/L) at the time of symptoms followed by relief after eating confirms a diagnosis for reactive hypoglycemia.
In contrast to Hartnup disease and related tubular conditions, Fanconi syndrome affects the transport of many different substances, so is not considered to be a defect in a specific channel, but a more general defect in the function of the proximal tubules.
Different diseases underlie Fanconi syndrome; they can be inherited, congenital, or acquired.
The clinical features of proximal renal tubular acidosis are:
- Polyuria, polydipsia and dehydration
- Hypophosphatemic rickets (in children) and osteomalacia (in adults)
- Growth failure
- Acidosis
- Hypokalemia
- Hyperchloremia
Other features of the generalized proximal tubular dysfunction of the Fanconi syndrome are:
- Hypophosphatemia/hyperphosphaturia
- Glycosuria
- Proteinuria/aminoaciduria
- Hyperuricosuria
Familial disorders
- Cystinosis
- Galactosemia
- Glycogen storage disease (type I)
- Hereditary fructose intolerance
- Lowe syndrome
- Tyrosinemia
- Wilson's disease
Acquired disorders
- Amyloidosis
- Multiple myeloma
- Paroxysmal nocturnal hemoglobinuria
- Toxins, such as HAART, ifosfamide, lead, and cadmium
Proximal renal tubular acidosis (pRTA) or Type 2 Renal tubular acidosis (RTA) is a type of RTA caused by a failure of the proximal tubular cells to reabsorb filtered bicarbonate from the urine, leading to urinary bicarbonate wasting and subsequent acidemia. The distal intercalated cells function normally, so the acidemia is less severe than dRTA and the urine can acidify to a pH of less than 5.3. pRTA also has several causes, and may occasionally be present as a solitary defect, but is usually associated with a more generalised dysfunction of the proximal tubular cells called Fanconi syndrome where there is also phosphaturia, glycosuria, aminoaciduria, uricosuria and tubular proteinuria.
Patients with type 2 RTA are also typically hypokalemic due to a combination of secondary hyperaldosteronism, and potassium urinary losses - though serum potassium levels may be falsely elevated because of acidosis. Administration of bicarbonate prior to potassium supplementation might lead to worsened hypokalemia, as potassium shifts intracellularly with alkanization.
The principal feature of Fanconi syndrome is bone demineralization (osteomalacia or rickets) due to phosphate and vitamin D wasting.
Congenital adrenal hyperplasia (CAH) are any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the biochemical steps of production of mineralocorticoids, glucocorticoids or sex steroids from cholesterol by the adrenal glands (steroidogenesis).
Most of these conditions involve excessive or deficient production of sex steroids and can alter development of primary or secondary sex characteristics in some affected infants, children, or adults.