Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Migraine headaches may be preceded by a visual "aura", lasting for 20 to 30 minutes, and then proceeding to the headache. Some people, however, experience the aura but do not have a headache. This visual aura can be very dramatic. Classically, a small blind spot appears in the central vision with a shimmering, zig-zag light inside of it. This enlarges, and moves to one side or the other of the vision, over a 20 to 30 minute period. When it is large, this crescent shaped blind spot containing this brightly flashing light can be difficult to ignore, and some people fear that they are having a stroke. In reality, it is generally a harmless phenomenon, except in people who subsequently get the headache of migraine. Since migraine originates in the brain, the visual effect typically involves the same side of vision in each eye, although it may seem more prominent in one eye or the other.
Some people get different variations of this phenomenon, with the central vision being involved, or with the visual effect similar to "heat rising off of a car". Some people describe a "kaleidoscope" effect, with pieces of the vision being missing. All of these variations are consistent with ophthalmic migraine.
Seeing rainbows around lights, especially at night, usually indicates swelling of the cornea. This may occur from a variety of causes which are discussed under Corneal Edema. Cataract can sometimes cause this also.
Colour vision is perceived mainly by the macula, which is the central vision portion of the retina. Thus any disorder affecting the macula may cause a disturbance in color vision. However, about 8% of males and 0.5% of females have some version of "colour blindness" from birth. Usually this is a genetically inherited trait, and is of the "red-green confusion" variety. The reds, browns, olives, and gold may be confused. Purple may be confused with blue, and pastel pinks, oranges, yellows, and greens look similar. Usually both eyes are affected equally.
There are many obscure macular retinal disorders that can lead to a loss of colour vision, and many of these syndromes are inherited as well. There may also be a problem with a generalized loss of vision with these problems as well. Other retinal problems can lead to a temporary disturbance of colour vision, such as Central serous chorioretinopathy, Macular Edema of different causes, and Macular Degeneration.
Certain types of cataract can gradually affect the colour vision, but this is usually not noticed until one cataract is removed. The cataract seems to filter out the colour blue, and everything seems more blue after cataract extraction. Optic nerve disorders such as Optic Neuritis can greatly affect colour vision, with colours seeming washed out during or after an episode.
Many people with amblyopia, especially those who only have a mild form, are not aware they have the condition until tested at older ages, since the vision in their stronger eye is normal. People typically have poor stereo vision, however, since it requires both eyes. Those with amblyopia further may have, on the affected eye, poor pattern recognition, poor visual acuity, and low sensitivity to contrast and motion.
Amblyopia is characterized by several functional abnormalities in spatial vision, including reductions in visual acuity, contrast sensitivity function, and vernier acuity, as well as spatial distortion, abnormal spatial interactions, and impaired contour detection. In addition, individuals with amblyopia suffer from binocular abnormalities such as impaired stereoacuity (stereoscopic acuity) and abnormal binocular summation. Also, a crowding phenomenon is present.
These deficits are usually specific to the amblyopic eye. However, subclinical deficits of the "better" eye have also been demonstrated.
People with amblyopia also have problems of binocular vision such as limited stereoscopic depth perception and usually have difficulty seeing the three-dimensional images in hidden stereoscopic displays such as autostereograms. Perception of depth, however, from monocular cues such as size, perspective, and motion parallax remains normal.
Although astigmatism may be asymptomatic, higher degrees of astigmatism may cause symptoms such as blurry vision, squinting, eye strain, fatigue, or headaches. Some research has pointed to the link between astigmatism and higher prevalence of migraine headaches.
Amblyopia has three main causes:
- Strabismic: by strabismus (misaligned eyes)
- Refractive: by anisometropia (difference of a certain degree of nearsightedness, farsightedness, or astigmatism), or by significant amount of equal refractive error in both eyes
- Deprivational: by deprivation of vision early in life by vision-obstructing disorders such as congenital cataract
There are many causes of blurred vision:
- Use of atropine or other anticholinergics
- Presbyopia—Difficulty focusing on objects that are close. Common in the elderly. (Accommodation tends to decrease with age.)
- Cataracts—Cloudiness over the eye's lens, causing poor night-time vision, halos around lights, and sensitivity to glare. Daytime vision is eventually affected. Common in the elderly.
- Glaucoma—Increased pressure in the eye, causing poor night vision, blind spots, and loss of vision to either side. A major cause of blindness. Glaucoma can happen gradually or suddenly—if sudden, it is a medical emergency.
- Diabetes—Poorly controlled blood sugar can lead to temporary swelling of the lens of the eye, resulting in blurred vision. While it resolves if blood sugar control is reestablished, it is believed repeated occurrences promote the formation of cataracts (which are not temporary).
- Diabetic retinopathy—This complication of diabetes can lead to bleeding into the retina. Another common cause of blindness.
- Hypervitaminosis A—Excess consumption of vitamin A can cause blurred vision.
- Macular degeneration—Loss of central vision, blurred vision (especially while reading), distorted vision (like seeing wavy lines), and colors appearing faded. The most common cause of blindness in people over age 60.
- Eye infection, inflammation, or injury.
- Sjögren's syndrome, a chronic autoimmune inflammatory disease that destroys moisture producing glands, including lacrimal (tear)
- Floaters—Tiny particles drifting across the eye. Although often brief and harmless, they may be a sign of retinal detachment.
- Retinal detachment—Symptoms include floaters, flashes of light across your visual field, or a sensation of a shade or curtain hanging on one side of your visual field.
- Optic neuritis—Inflammation of the optic nerve from infection or multiple sclerosis. You may have pain when you move your eye or touch it through the eyelid.
- Stroke or transient ischemic attack
- Brain tumor
- Toxocara—A parasitic roundworm that can cause blurred vision
- Bleeding into the eye
- Temporal arteritis—Inflammation of an artery in the brain that supplies blood to the optic nerve.
- Migraine headaches—Spots of light, halos, or zigzag patterns are common symptoms prior to the start of the headache. A retinal migraine is when you have only visual symptoms without a headache.
- Myopia—Blurred vision may be a systemic sign of local anaesthetic toxicity
- Reduced blinking—Lid closure that occurs too infrequently often leads to irregularities of the tear film due to prolonged evaporation, thus resulting in disruptions in visual perception.
- Carbon monoxide poisoning—Reduced oxygen delivery can effect many areas of the body including vision. Other symptoms caused by CO include vertigo, hallucination and sensitivity to light.
First signs of a Fuchs spot are distorted sight of straight lines near the fovea, which some days later turn to the typical well-circumscribed patches after absorption of haemorrhage, and a pigmented scar remains. As in macular degeneration, central sight is affected. Atrophy leads to the loss of two or more lines of the Snellen chart.
In with-the-rule astigmatism, the eye has too much "plus" cylinder in the horizontal axis relative to the vertical axis (i.e., the eye is too "steep" along the vertical meridian relative to the horizontal meridian). This causes vertical beams of light to focus anterior to (in front of) horizontal beams of light, within the eye. This problem may be corrected using spectacles which have a "minus" cylinder placed on this horizontal axis. The effect of this will be that when a vertical beam of light in the distance travels towards the eye, the "minus" cylinder (which is placed with its axis lying horizontally – in line with the patient's excessively steep horizonal axis/vertical meridian) will cause this vertical beam of light to slightly "diverge", or "spread out vertically", before it reaches the eye. This compensates for the fact that the patient's eye converges light more powerfully in the vertical meridian than the horizontal meridian. Hopefully, after this, the eye will focus all light on the same location at the retina, and the patient's vision will be less blurred.
In against-the-rule astigmatism, a plus cylinder is added in the horizontal axis (or a minus cylinder in the vertical axis).
Axis is always recorded as an angle in degrees, between 0 and 180 degrees in a counter-clockwise direction. Both 0 and 180 degrees lie on a horizontal line at the level of the center of the pupil, and as seen by an observer, 0 lies on the right of both the eyes.
Irregular astigmatism, which is often associated with prior ocular surgery or trauma, is also a common naturally occurring condition. The two steep hemimeridians of the cornea, 180° apart in regular astigmatism, may be separated by less than 180° in irregular astigmatism (called "nonorthogonal" irregular astigmatism); and/or the two steep hemimeridians may be asymmetrically steep—that is, one may be significantly steeper than the other (called "asymmetric" irregular astigmatism). Irregular astigmatism is quantified by a vector calculation called topographic disparity.
Diplopia can also occur when viewing with only one eye; this is called monocular diplopia, or, where the patient perceives more than two images, monocular polyopia. While there rarely may be serious causes behind monocular diplopia symptoms, this is much less often the case than with binocular diplopia. The differential diagnosis of multiple image perception includes the consideration of such conditions as corneal surface keratoconus, subluxation of the lens, a structural defect within the eye, a lesion in the anterior visual cortex or non-organic conditions, however diffraction-based (rather than geometrical) optical models have shown that common optical conditions, especially astigmatism, can also produce this symptom.
Tunnel vision is the loss of peripheral vision with retention of central vision, resulting in a constricted circular tunnel-like field of vision.
Many times, an optic pit is asymptomatic and is just an incidental finding on examination of the eye by a physician. However, some patients may present with the symptoms of a posterior vitreous detachment or serous retinal detachment. This is because optic pits are associated with these disorders and are even speculated to be the actual cause of these disorders when they arise in patients with optic pits (see "Associated Retinal Changes" below for a more in-depth discussion on this theory). The most common visual field defects include an enlarged blind spot and a scotoma. Visual acuity is typically not affected by the pit but may get worse if serous detachment of the macula occurs. Metamorphopsia (distorted vision) may then result.
Optic pits were first described in 1882 as dark gray depressions in the optic disc. They may, however, appear white or yellowish instead. They can also range greatly in size (e.g. some can be minuscule while others may be large enough as to occupy most of optic disc surface). Optic pits are associated with other abnormalities of the optic nerve including large optic nerve size, large inferior colobomas of the optic disc, and colobomas of the retina. The optic disc originates from the optic cup when the optic vesicle invaginates and forms an embryonic fissure (or groove). Optic pits may develop due to failure of the superior end of the embryonic fissure to close completely.
The earliest sign of exotropia is usually a noticeable outward deviation of the eye. This sign may at first be intermittent, occurring when a child is daydreaming, not feeling well, or tired. It may also be more noticeable when the child looks at something in the distance. Squinting or frequent rubbing of the eyes is also common with exotropia. The child probably will not mention seeing double, i.e., double vision. However, he or she may close one eye to compensate for the problem.
Generally, exotropia progresses in frequency and duration. As the disorder progresses, the eyes will start to turn out when looking at close objects as well as those in the distance. If left untreated, the eye may turn out continually, causing a loss of binocular vision.
In young children with any form of strabismus, the brain may learn to ignore the misaligned eye's image and see only the image from the best-seeing eye. This is called amblyopia, or lazy eye, and results in a loss of binocular vision, impairing depth perception. In adults who develop strabismus, double vision sometimes occurs because the brain has already been trained to receive images from both eyes and cannot ignore the image from the turned eye.
Additionally in adults who have had exotropia since childhood, the brain may adapt to using a "blind-spot" whereby it receives images from both eyes, but no full image from the deviating eye, thus avoiding double vision and in fact increasing peripheral vision on the side of the deviating eye.
Suppression of an eye is a subconscious adaptation by a person's brain to eliminate the symptoms of disorders of binocular vision such as strabismus, convergence insufficiency and aniseikonia. The brain can eliminate double vision by ignoring all or part of the image of one of the eyes. The area of a person's visual field that is suppressed is called the suppression scotoma (with a scotoma meaning, more generally, an area of partial alteration in the visual field). Suppression can lead to amblyopia.
The first symptoms most people notice are difficulty reading fine print, particularly in low light conditions, eyestrain when reading for long periods, blurring of near objects or temporarily blurred vision when changing the viewing distance. Many extreme presbyopes complain that their arms have become "too short" to hold reading material at a comfortable distance.
Presbyopia, like other focal imperfections, becomes less noticeable in bright sunlight when the pupil becomes smaller. As with any lens, increasing the focal ratio of the lens increases depth of field by reducing the level of blur of out-of-focus objects (compare the effect of aperture on depth of field in photography).
The onset of correction for presbyopia varies among those with certain professions and those with miotic pupils. In particular, farmers and homemakers seek correction later, whereas service workers and construction workers seek eyesight correction earlier. Scuba divers with interest in underwater photography may notice presbyopic changes while diving before they recognize the symptoms in their normal routines due to the near focus in low light conditions.
Temporary binocular diplopia can be caused by alcohol intoxication or head injuries, such as concussion (if temporary double vision does not resolve quickly, one should see an optometrist or ophthalmologist immediately). It can also be a side effect of benzodiazepines or opioids, particularly if used in larger doses for recreation, the anti-epileptic drugs Phenytoin and Zonisamide, and the anti-convulsant drug Lamotrigine, as well as the hypnotic drug Zolpidem and the dissociative drugs Ketamine and Dextromethorphan. Temporary diplopia can also be caused by tired and/or strained eye muscles or voluntarily. If diplopia appears with other symptoms such as fatigue and acute or chronic pain, the patient should see an ophthalmologist immediately.
Nobel-prize winner David H. Hubel described suppression in simple terms as follows:
Suppression is frequent in children with anisometropia or strabismus or both. For instance, children with infantile esotropia may alternate with which eye they look, each time suppressing vision in the other eye.
Many people with near-sightedness can read comfortably without eyeglasses or contact lenses even after age forty. However, their myopia does not disappear and the long-distance visual challenges remain. Myopes considering refractive surgery are advised that surgically correcting their nearsightedness may be a disadvantage after age forty, when the eyes become presbyopic and lose their ability to accommodate or change focus, because they will then need to use glasses for reading. Myopes with astigmatism find near vision better, though not perfect, without glasses or contact lenses when presbyopia sets in, but the more astigmatism, the poorer the uncorrected near vision.
A surgical technique offered is to create a "reading eye" and a "distance vision eye," a technique commonly used in contact lens practice, known as monovision. Monovision can be created with contact lenses, so candidates for this procedure can determine if they are prepared to have their corneas reshaped by surgery to cause this effect permanently.
The Fuchs spot or sometimes Forster-Fuchs' retinal spot is a degeneration of the macula in case of high myopia. It is named after the two persons who first described it: Ernst Fuchs, who described a pigmented lesion in 1901, and Forster, who described subretinal neovascularisation in 1862. The size of the spots are proportionate to the severity of the pathological myopia.
Traction caused by VMA is the underlying pathology of an eye disease called symptomatic VMA. There is evidence that symptomatic VMA can contribute to the development of several well-known eye disorders, such as macular hole and macular pucker, that can cause visual impairment, including blindness. It may also be associated with age-related macular degeneration (AMD), diabetic macular edema (DME), retinal vein occlusion, and diabetic retinopathy (DR).
Cyclotropia is a form of strabismus in which, compared to the correct positioning of the eyes, there is a of one eye (or both) about the eye's visual axis. Consequently, the visual fields of the two eyes appear tilted relative to each other. The corresponding "latent" condition – a condition in which torsion occurs only in the absence of appropriate visual stimuli – is called cyclophoria.
Cyclotropia is often associated with other disorders of strabism, can result in double vision, and can cause other symptoms, in particular head tilt.
In some cases, subjective and objective cyclodeviation may result from surgery for oblique muscle disorders; if the visual system cannot compensate for it, cyclotropia and rotational double vision (cyclodiplopia) may result. The role of cyclotropia in vision disorders is not always correctly identified. In several cases of double vision, once the underlying cyclotropia was identified, the condition was solved by surgical cyclotropia correction.
Conversely, artificially causing cyclotropia in cats leads to reduced vision acuity, resulting in a defect similar to strabismic amblyopia.
Optic pit, optic nerve pit, or optic disc pit is a congenital excavation (or regional depression) of the optic disc (also optic nerve head), resulting from a malformation during development of the eye. Optic pits are important because they are associated with posterior vitreous detachments (PVD) and even serous retinal detachments.
Vitreomacular adhesion (VMA) is a human medical condition where the vitreous gel (or simply vitreous) of the human eye adheres to the retina in an abnormally strong manner. As the eye ages, it is common for the vitreous to separate from the retina. But if this separation is not complete, i.e. there is still an adhesion, this can create pulling forces on the retina that may result in subsequent loss or distortion of vision. The adhesion in of itself is not dangerous, but the resulting pathological vitreomacular traction (VMT) can cause severe ocular damage.
The current standard of care for treating these adhesions is pars plana vitrectomy (PPV), which involves surgically removing the vitreous from the eye. A biological agent for non-invasive treatment of adhesions called ocriplasmin has been approved by the FDA on Oct 17 2012.
Exotropia is a form of strabismus where the eyes are deviated outward. It is the opposite of esotropia and usually involves more severe axis deviation than exophoria. People with exotropia often experience crossed diplopia. Intermittent exotropia is a fairly common condition. "Sensory exotropia" occurs in the presence of poor vision. Infantile exotropia (sometimes called "congenital exotropia") is seen during the first year of life, and is less common than "essential exotropia" which usually becomes apparent several years later.
The brain's ability to see three-dimensional objects depends on proper alignment of the eyes. When both eyes are properly aligned and aimed at the same target, the visual portion of the brain fuses the forms into a single image. When one eye turns inward, outward, upward, or downward, two different pictures are sent to the brain. This causes loss of depth perception and binocular vision. There have also been some reports of people that can "control" their afflicted eye. The term is from Greek "exo" meaning "outward" and "trope" meaning "a turning".
Central serous retinopathy (CSR), also known as central serous chorioretinopathy (CSC or CSCR), is an eye disease which causes visual impairment, often temporary, usually in one eye. When the disorder is active it is characterized by leakage of fluid under the retina that has a propensity to accumulate under the central macula. This results in blurred or distorted vision (metamorphopsia). A blurred or gray spot in the central visual field is common when the retina is detached. Reduced visual acuity may persist after the fluid has disappeared.
The disease is considered of unknown cause. It mostly affects white males in the age group 20 to 50 and occasionally other groups. The condition is believed to be exacerbated by stress or corticosteroid use.
Dry (nonexudative, > 80%)—deposition of yellowish extracellular material in and between bruch membrane and retinal pigment epithelium (“drusen”) with gradual loss in vision.
Wet (exudative, 10–15%)—rapid loss of vision due to bleeding secondary to choroidal neovascularization.