Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Patients may experience numbness, prickling or tingling sensations (paresthesias), or the feeling a limb has "fallen asleep" (an indicator of nerve compression), burning, cutting or other sensations.
Dissociated sensory loss is a pattern of neurological damage caused by a lesion to a single tract in the spinal cord which involves "selective" loss of fine touch and proprioception "without" loss of pain and temperature, or vice versa.
Understanding the mechanisms behind these selective lesions requires a brief discussion of the anatomy involved.
Loss of pain and temperature are due to damage to the lateral spinothalamic tracts, which cross the central part of the cord close to the level where they enter it and travel up the spinal column on the opposite side to the one they innervate (i.e. they "ascend contralaterally"). Note that a lesion of the lateral spinothalamic tract at a given level will not result in sensory loss for the dermatome of the same level; this is due to the fibers of the tract of Lissauer which transmit the neuron one or two levels above the affected segment (thus bypassing the segmental lesion on the contralateral side).
Loss of fine touch and proprioception are due to damage to the dorsal columns, which do not cross the cord until the brainstem, and so travel up the column on the same side to the one they innervate (i.e. they "ascend ipsilaterally").
This means that a lesion of the dorsal columns will cause loss of touch and proprioception below the lesion and on the same side as it, while a lesion of the spinothalamic tracts will cause loss of pain and temperature below the lesion and on the opposite side to it.
Dissociated sensory loss always suggests a focal lesion within the spinal cord or brainstem.
The location of cord lesions affects presentation—for instance, a central lesion (such as that of syringomyelia) will knock out second order neurons of the spinothalamic tract as they cross the centre of the cord, and will cause loss of pain and temperature without loss of fine touch or proprioception.
Other causes of dissociated sensory loss include:
- Diabetes mellitus
- Syringomyelia
- Brown-Séquard syndrome
- Lateral medullary syndrome aka Wallenberg's syndrome
- Anterior spinal artery thrombosis
- Tangier disease
- Subacute combined degeneration
- Multiple sclerosis
- Tabes dorsalis
- Friedreich's ataxia (or other spinocerebellar degeneration)
A variety of nerve types can be subjected to neurapraxia and therefore symptoms of the injury range in degree and intensity. Common symptoms of neurapraxia are disturbances in sensation, weakness of muscle, vasomotor and sudomotor paralysis in the region of the affected nerve or nerves, and abnormal sensitivity of the nerve at the point of injury. It has been observed that subjective sensory symptoms include numbness, tingling, and burning sensations at the site of the injury. Objective sensory symptoms are generally minimal in regards to touch, pain, heat, and cold. In cases of motor neuron neurapraxia, symptoms consist of flaccid paralysis of the muscles innervated by the injured nerve or nerves.
Symptoms are often transient and only last for a short period of time immediately following the injury. However, in severe cases of neurapraxia, symptoms can persist for weeks or months at a time.
Certain types of seizures are associated with the somatosensory system. Cortical injury may lead to loss of thermal sensation or the ability to discriminate pain. An aura involving thermal and painful sensations is a phenomenon known to precede the onset of an epileptic seizure or focal seizure. Another type of seizure, called a sensory Jacksonian seizure involves an abnormal, localizable, cutaneous sensation but does not have apparent stimulus. This sensation may progress along a limb or to adjacent cutaneous body areas, reflecting abnormal neuronal firing in the postcentral gyrus where an epileptic discharge is propagated. These episodes in which patients are consciously aware during a seizure have been useful for identifying problems associated with the somatosensory cortex. Patients can describe the nature of the seizure and how they feel during it.
Dejerine–Roussy syndrome is most commonly preceded by numbness in the affected side. In these cases, numbness is replaced by burning and tingling sensations, widely varying in degree of severity across all cases. The majority of those reported are cases in which the symptoms are severe and debilitating. Burning and tingling can also be accompanied by hypersensitivity, usually in the form of dysaesthesia or allodynia. Less commonly, some patients develop severe ongoing pain with little or no stimuli.
Allodynia is pain from a stimulus that would normally not cause pain. For example, there is a patient who experiences unrelenting pain when a breeze touches his skin. Most patients experiencing allodynia, experience pain with touch and pressure, however some can be hypersensitive to temperature.
Dysaesthesia is defined as pain due to thalamic lesioning. This form of neuropathic pain can be any combination of itching, tingling, burning, or searing experienced spontaneously or from stimuli.
Allodynia and dysaesthesia replace numbness between one week and a few months after a thalamic stroke. In general, once the development of pain has stopped, the type and severity of pain will be unchanging and if untreated, persist throughout life. Consequentially, many will undergo some form of pain treatment and adjust to their new lives as best they can.
Pain associated with Dejerine–Roussy syndrome is sometimes coupled with anosognosia or somatoparaphrenia which causes a patient having undergone a right-parietal, or right-sided stroke to deny any paralysis of the left side when indeed there is, or deny the paralyzed limb(s) belong to them. Although debatable, these symptoms are rare and considered part of a "thalamic phenomenon", and are not normally considered a characteristic of Dejerine–Roussy syndrome.
Dejerine-Roussy is a rare pain syndrome. Individuals with emerging Dejerine–Roussy syndrome usually report they are experiencing unusual pain or sensitivity that can be allodynic in nature or triggered by seemingly unrelated stimuli (sounds, tastes). Symptoms are typically lateralized and may include vision loss or loss of balance (position sense). Workup should be performed by a neurologist and brain imaging to look for evidence of infarction or tumor should be obtained.
Neurapraxia is a disorder of the peripheral nervous system in which there is a temporary loss of motor and sensory function due to blockage of nerve conduction, usually lasting an average of six to eight weeks before full recovery. Neurapraxia is derived from the word apraxia, meaning “loss or impairment of the ability to execute complex coordinated movements without muscular or sensory impairment”.
This condition is typically caused by a blunt neural injury due to external blows or shock-like injuries to muscle fibers and skeletal nerve fibers, which leads to repeated or prolonged pressure buildup on the nerve. As a result of this pressure, ischemia occurs, a neural lesion results, and the human body naturally responds with edema extending in all directions from the source of the pressure. This lesion causes a complete or partial action potential conduction block over a segment of a nerve fiber and thus a reduction or loss of function in parts of the neural connection downstream from the lesion, leading to muscle weakness.
Neurapraxia results in temporary damage to the myelin sheath but leaves the nerve intact and is an impermanent condition; thus, Wallerian degeneration does not occur in neurapraxia. In order for the condition to be considered neurapraxia, according to the Seddon classification system of peripheral nerve injury, there must be a complete and relatively rapid recovery of motor and sensory function once nerve conduction has been restored; otherwise, the injury would be classified as axonotmesis or neurotmesis. Thus, neurapraxia is the mildest classification of peripheral nerve injury.
Neurapraxia is very common in professional athletes, especially American football players, and is a condition that can and should be treated by a physician.
A nerve contains sensory fibers, motor fibers, or both. Sensory fibers lesions cause the sensory problems below to the site of injury. Motor fibers injuries may involve lower motor neurons, sympathetic fibers, and or both.
Assessment items include:
- Sensory fibers that send sensory information to the central nervous system.
- Motor fibers that allow movement of skeletal muscle.
- Sympathetic fibers that innervate the skin and blood vessels of the four extremities.
In assessment, sensory-motor defects may be mild, moderate, or severe. Damage to motor fibers results in paralysis of the muscles. Nervous plexus injuries create more signs and symptoms from sensory-motor problems (such as brachial plexus injuries). In these cases, the prognosis depends on the amount of damage and the degree of functional impairment.
Axonotmesis is an injury to the peripheral nerve of one of the extremities of the body. The axons and their myelin sheath are damaged in this kind of injury, but the endoneurium, perineurium and epineurium remain intact. Motor and sensory functions distal to the point of injury are completely lost over time leading to Wallerian Degeneration due to ischemia, or loss of blood supply. Axonotmesis is usually the result of a more severe crush or contusion than neurapraxia.
Axonotmesis mainly follows a stretch injury. These stretch injuries can either dislocate joins or fracture a limb, due to which peripheral nerves are severed. If the sharp pain from the exposed axon of the nerve is not observed, one can identify a nerve injury from abnormal sensations in their limb. A doctor may ask for a Nerve Conduction Velocity (NCV) test to completely diagnose the issue. If diagnosed as nerve injury, Electromyography performed after 3 to 4 weeks shows signs of denervations and fibrillations, or irregular connections and contractions of muscles.
Neuropathy disorders usually have onset in childhood or young adulthood. Motor symptoms seem to be more predominant that sensory symptoms. Symptoms of these disorders include: fatigue, pain, lack of balance, lack of feeling, lack of reflexes, and lack of sight and hearing, which result from muscle atrophy. Patients can also suffer from high arched feet, hammer toes, foot drop, foot deformities, and scoliosis. These symptoms are a result of severe muscular weakness and atrophy. In patients suffering from demyelinating neuropathy, symptoms are due to slow nerve conduction velocities, however people with axonal degradation have average to normal nerve conduction velocities.
Hypoesthesia (or hypesthesia) refer to a reduced sense of touch or sensation, or a partial loss of sensitivity to sensory stimuli. In everyday speech this is sometimes referred to as "numbness".
Hypoesthesia is one of the negative sensory symptoms associated with cutaneous sensory disorder (CSD). In this condition, patients have abnormal disagreeable skin sensations that can be increased (stinging, itching or burning) or decreased (numbness or hypoesthesia). There are no other apparent medical diagnoses to explain these symptoms.
Cutaneous hyperesthesia has been associated with diagnosis of appendicitis in children but this symptom was not supported by the evidence.
Hypoesthesia originating in (and extending centrally from) the feet, fingers, navel, and/or lips is one of the common symptoms of beriberi, which is a set of symptoms caused by thiamine deficiency.
Hypoesthesia is also one of the more common manifestations of decompression sickness (DCS), along with joint pain, rash and generalized fatigue.
Reported symptoms include:
- Sensorineural hearing loss
- Vestibular areflexia
- Hearing impairment
- Vertigo
- Nausea and vomiting
- Head movement-dependent oscillopsia
Symptoms of CMT usually begin in early childhood or early adulthood, but can begin later. Some people do not experience symptoms until their early thirties or forties. Usually, the initial symptom is foot drop early in the course of the disease. This can also cause hammer toe, where the toes are always curled. Wasting of muscle tissue of the lower parts of the legs may give rise to a "stork leg" or "inverted champagne bottle" appearance. Weakness in the hands and forearms occurs in many people as the disease progresses.
Loss of touch sensation in the feet, ankles and legs, as well as in the hands, wrists and arms occur with various types of the disease. Early and late onset forms occur with 'on and off' painful spasmodic muscular contractions that can be disabling when the disease activates. High-arched feet (pes cavus) or flat-arched feet (pes planus) are classically associated with the disorder. Sensory and proprioceptive nerves in the hands and feet are often damaged, while unmyelinated pain nerves are left intact. Overuse of an affected hand or limb can activate symptoms including numbness, spasm, and painful cramping.
Symptoms and progression of the disease can vary. Involuntary grinding of teeth as well as squinting are prevalent and often go unnoticed by the person affected. Breathing can be affected in some; so can hearing, vision, as well as the neck and shoulder muscles. Scoliosis is common, causing hunching and loss of height. Hip sockets can be malformed. Gastrointestinal problems can be part of CMT, as can difficulty chewing, swallowing, and speaking (due to atrophy of vocal cords). A tremor can develop as muscles waste. Pregnancy has been known to exacerbate CMT, as well as severe emotional stress. Patients with CMT must avoid periods of prolonged immobility such as when recovering from a secondary injury as prolonged periods of limited mobility can drastically accelerate symptoms of CMT.
Pain due to postural changes, skeletal deformations, muscle fatigue and cramping is fairly common in people with CMT. It can be mitigated or treated by physical therapies, surgeries, and corrective or assistive devices. Analgesic medications may also be needed if other therapies do not provide relief from pain. Neuropathic pain is often a symptom of CMT, though, like other symptoms of CMT, its presence and severity varies from case to case. For some people, pain can be significant to severe and interfere with daily life activities. However, pain is not experienced by all people with CMT. When neuropathic pain is present as a symptom of CMT, it is comparable to that seen in other peripheral neuropathies, as well as postherpetic neuralgia and complex regional pain syndrome, among other diseases.
Hereditary motor and sensory neuropathies (HMSN) is a name sometimes given to a group of different neuropathies which are all characterized by their impact upon both afferent and efferent neural communication. HMSN are characterised by atypical neural development and degradation of neural tissue. The two common forms of HMSN are either hypertrophic demyelinated nerves or complete atrophy of neural tissue. Hypertrophic condition causes neural stiffness and a demyelination of nerves in the peripheral nervous system, and atrophy causes the breakdown of axons and neural cell bodies. In these disorders, a patient experiences progressive muscle atrophy and sensory neuropathy of the extremities.
The term "hereditary motor and sensory neuropathy" was used mostly historically to denote the more common forms Charcot–Marie–Tooth disease (CMT). With the identification of a wide number of genetically and phenotypically distinct forms of CMT, the term HMSN is now used less frequently.
Unlike ataxias of cerebellar origin, Bruns apraxia exhibits many frontal lobe ataxia characteristics, with some or all present.
- Difficulty in initiating movement
- Poor truncal mobility
- Falls due to minor balance disturbances
- Greatly hindered postural responses
- Characteristic magnetic gait, the inability to raise one's foot off of the floor.
- Wide base, poor balance control when in stance
- Short stride
- En bloc turns
Often patients with frontal lobe ataxia may experience minute cognitive changes that accompany the gait disturbances, such as frontal dementia and presentation of frontal release signs (Plantar reflex). Urinary incontinence may also be present.
Bruns apraxia can be distinguished from Parkinsonian ataxia and cerebellar ataxia in a number of ways. Patients typically afflicted with Parkinsonian ataxia typically have irregular arm swing, a symptom not typically present in frontal ataxia. Walking stride in cerebellar ataxia varies dramatically, accompanied by erratic foot placement and sudden, uncontrolled lurching, not generally characteristic of Bruns apraxia.
Similarly to vision loss, hearing loss can vary from full or partial inability to detect some or all frequencies of sound which can typically be heard by members of their species. For humans, this range is approximately 20 Hz to 20 kHz at ~6.5 dB, although a 10 dB correction is often allowed for the elderly. Primary causes of hearing loss due to an impaired sensory system include long-term exposure to environmental noise, which can damage the mechanoreceptors responsible for receiving sound vibrations, as well as multiple diseases, such as HIV or meningitis, which damage the cochlea and auditory nerve, respectively.
Hearing loss may be gradual or sudden. Hearing loss may be very mild, resulting in minor difficulties with conversation, or as severe as complete deafness. The speed with which hearing loss occurs may give clues as to the cause. If hearing loss is sudden, it may be from trauma or a problem with blood circulation. A gradual onset is suggestive of other causes such as aging or a tumor. If you also have other associated neurological problems, such as tinnitus or vertigo, it may indicate a problem with the nerves in the ear or brain. Hearing loss may be unilateral or bilateral. Unilateral hearing loss is most often associated with conductive causes, trauma, and acoustic neuromas. Pain in the ear is associated with ear infections, trauma, and obstruction in the canal.
Signs and symptoms may not appear for decades after the initial infection and include weakness, diminished reflexes, paresthesias (shooting and burning pains, pricking sensations, and formication), hypoesthesias (abnormally diminished cutaneous, especially tactile, sensory modalities), tabetic gait (locomotor ataxia), progressive degeneration of the joints, loss of coordination, episodes of intense pain and disturbed sensation (including glossodynia), personality changes, urinary incontinence, dementia, deafness, visual impairment, positive Romberg's test, and impaired response to light (Argyll Robertson pupil). The skeletal musculature is hypotonic due to destruction of the sensory limb of the spindle reflex. The deep tendon reflexes are also diminished or absent; for example, the "knee jerk" or patellar reflex may be lacking (Westphal's sign). A complication of tabes dorsalis can be transient neuralgic paroxysmal pain affecting the eyes and the ophthalmic areas, previously called "Pel's crises" after Dutch physician P.K. Pel. Now more commonly called "tabetic ocular crises", an attack is characterized by sudden, intense eye pain, tearing of the eyes and sensitivity to light.
"Tabes dorsalgia" is a related lancinating back pain.
"Tabetic gait" is a characteristic ataxic gait of untreated syphilis where the person's feet slap the ground as they strike the floor due to loss of proprioception. In daylight the person can avoid some unsteadiness by watching their own feet.
Five different clinical entities have been described under hereditary sensory and autonomic neuropathies – all characterized by progressive loss of function that predominantly affects the peripheral sensory nerves. Their incidence has been estimated to be about 1 in 25,000.
Hereditary sensory and autonomic neuropathy (HSAN) or hereditary sensory neuropathy (HSN) is a condition used to describe any of the types of this disease which inhibit sensation.
They are less common than Charcot-Marie-Tooth disease.
Vestibulocochlear dysfunction progressive familial, known also as familial progressive vestibulocochlear dysfunction is an autosomal dominant disease that results in sensorineural hearing loss and vestibular areflexia. Patients report feelings of vague dissiness, blurred vision, dysequilibrium in the dark, and progressive hearing impairment.
CCS is characterized by disproportionately greater motor impairment in upper compared to lower extremities, and variable degree of sensory loss below the level of injury in combination with bladder dysfunction and urinary retention. This syndrome differs from that of a complete lesion, which is characterized by total loss of all sensation and movement below the level of the injury.
Radial neuropathy (or radial mononeuropathy) is a type of mononeuropathy which results from acute trauma to the radial nerve that extends the length of the arm. It is known as transient paresthesia when sensation is temporarily abnormal.
Neuritis is a general term for inflammation of a nerve or the general inflammation of the peripheral nervous system. Symptoms depend on the nerves involved, but may include pain, paresthesia (pins-and-needles), paresis (weakness), hypoesthesia (numbness), anesthesia, paralysis, wasting, and disappearance of the reflexes.
Causes of neuritis include:
Bruns apraxia, or frontal ataxia is a gait apraxia found in patients with bilateral frontal lobe disorders. It is characterised by an inability to initiate the process of walking, despite the power and coordination of the legs being normal when tested in the seated or lying position. The gait is broad-based with short steps with a tendency to fall backwards. It was originally described in patients with frontal lobe tumours, but is now more commonly seen in patients with cerebrovascular disease.
It is named after Ludwig Bruns.
Symptoms of neurotmesis include but are not limited to pain, dysesthesias (uncomfortable sensations), and complete loss of sensory and motor function of the affected nerve.