Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Signs and symptoms of a biotinidase deficiency can appear several days after birth. These include seizures, hypotonia and muscle/limb weakness, ataxia, paresis, hearing loss, optic atrophy, skin rashes (including seborrheic dermatitis and psoriasis), and alopecia. If left untreated, the disorder can rapidly lead to coma and death.
Biotinidase deficiency can also appear later in life. This is referred to as "late-onset" biotinidase deficiency. The symptoms are similar, but perhaps more mild, because if an individual survives the neonatal period they likely have some residual activity of biotin-related enzymes. Studies have noted individuals who were asymptomatic until adolescence or early adulthood. One study pointed out that untreated individuals may not show symptoms until age 21. Furthermore, in rare cases, even individuals with profound deficiencies of biotinidase can be asymptomatic.
Symptom severity is predictably correlated with the severity of the enzyme defect. Profound biotinidase deficiency refers to situations where enzyme activity is 10% or less. Individuals with partial biotinidase deficiency may have enzyme activity of 10-30%.
Functionally, there is no significant difference between dietary biotin deficiency and genetic loss of biotin-related enzyme activity. In both cases, supplementation with biotin can often restore normal metabolic function and proper catabolism of leucine and isoleucine.
The symptoms of biotinidase deficiency (and dietary deficiency of biotin) can be quite severe. A 2004 case study from Metametrix detailed the effects of biotin deficiency, including aggression, cognitive delay, and reduced immune function.
Biotinidase deficiency is an autosomal recessive metabolic disorder in which biotin is not released from proteins in the diet during digestion or from normal protein turnover in the cell. This situation results in biotin deficiency.
Biotin, also called vitamin B, is an important water-soluble nutrient that aids in the metabolism of fats, carbohydrates, and proteins. Biotin deficiency can result in behavioral disorders, lack of coordination, learning disabilities and seizures. Biotin supplementation can alleviate and sometimes totally stop such symptoms.
Severe zinc deficiency may disturb the sense of smell and taste. Night blindness may be a feature of severe zinc deficiency, however most reports of night blindness and abnormal dark adaptation in humans with zinc deficiency have occurred in combination with other nutritional deficiencies (e.g. vitamin A).
Zinc deficiency may manifest as acne, eczema, xerosis (dry, scaling skin), seborrheic dermatitis, or alopecia (thin and sparse hair). There may also be impaired wound healing.
People with methylmalonyl CoA mutase deficiency exhibit many symptoms similar to other diseases involving inborn errors of metabolism. Sometimes the symptoms appear shortly after birth, but other times the onset of symptoms is later.
Newborn babies experience with vomiting, acidosis, hyperammonemia, hepatomegaly (enlarged livers), hyperglycinemia (high glycine levels), and hypoglycemia (low blood sugar). Later, cases of thrombocytopenia and neutropenia can occur.
In some cases intellectual and developmental disabilities, such as autism, were noted with increased frequency in populations with methylmalonyl-CoA mutase deficiency.
The term fatty acid oxidation disorder (FAOD) is sometimes used, especially when there is an emphasis on the oxidation of the fatty acid.
In addition to the fetal complications, they can also cause complications for the mother during pregnancy.
Examples include:
- trifunctional protein deficiency
- MCADD, LCHADD, and VLCADD
The clinical picture is heterogeneous and includes motor delay, seizures, moderate to severe mental retardation, absent speech, growth delay, muscular hypotonia and autistic features.
A broad classification for genetic disorders that result from an inability of the body to produce or utilize one enzyme that is required to oxidize fatty acids. The enzyme can be missing or improperly constructed, resulting in it not working. This leaves the body unable to produce energy within the liver and muscles from fatty acid sources.
The body's primary source of energy is glucose; however, when all the glucose in the body has been expended, a normal body digests fats. Individuals with a fatty-acid metabolism disorder are unable to metabolize this fat source for energy, halting bodily processes. Most individuals with a fatty-acid metabolism disorder are able to live a normal active life with simple adjustments to diet and medications.
If left undiagnosed many complications can arise. When in need of glucose the body of a person with a fatty-acid metabolism disorder will still send fats to the liver. The fats are broken down to fatty acids. The fatty acids are then transported to the target cells but are unable to be broken down, resulting in a build-up of fatty acids in the liver and other internal organs.
Fatty-acid metabolism disorders are sometimes classified with the lipid metabolism disorders, but in other contexts they are considered a distinct category.
Methylmalonyl-CoA mutase is a mitochondrial homodimer apoenzyme (EC. 5. 4.99.2) that focuses on the catalysis of methylmalonyl CoA to succinyl CoA. The enzyme is bound to adenosylcobalamin, a hormonal derivative of vitamin B12 in order to function. Methylmalonyl-CoA mutase deficiency is caused by genetic defect in the MUT gene responsible for encoding the enzyme. Deficiency in this enzyme accounts for 60% of the cases of methylmalonic acidemia.
Another common symptom of copper deficiency is peripheral neuropathy, which is numbness or tingling that can start in the extremities and can sometimes progress radially inward towards the torso. In an Advances in Clinical Neuroscience & Rehabilitation (ACNR) published case report, a 69-year-old patient had progressively worsened neurological symptoms. These symptoms included diminished upper limb reflexes with abnormal lower limb reflexes, sensation to light touch and pin prick was diminished above the waist, vibration sensation was lost in the sternum, and markedly reduced proprioception or sensation about the self’s orientation. Many people suffering from the neurological effects of copper deficiency complain about very similar or identical symptoms as the patient. This numbness and tingling poses danger for the elderly because it increases their risk of falling and injuring themselves. Peripheral neuropathy can become very disabling leaving some patients dependent on wheel chairs or walking canes for mobility if there is lack of correct diagnosis. Rarely can copper deficiency cause major disabling symptoms. The deficiency will have to be present for an extensive amount of time until such disabling conditions manifest.
Copper deficiency can cause a wide variety of neurological problems including, myelopathy, peripheral neuropathy, and optic neuropathy.
Urocanic aciduria is thought to be relatively benign. Although aggressive behavior and mental retardation have been reported with the disorder, no definitive neurometabolic connection has yet been established.
The low incidence of this syndrome is often related to aldolase A's essential glycolytic role along with its exclusive expression in blood and skeletal muscle. Early developmental reliance and constitutive function prevents severe mutation in successful embryos. Infrequent documentation thus prevents clear generalisation of symptoms and causes. However five cases have been well described. ALDOA deficiency is diagnosed through reduced aldoA enzymatic activity, however, both physiological response and fundamental causes vary.
Aminoacylase 1 deficiency is a rare inborn error of metabolism. To date only 21 cases have been described.
2,4 Dienoyl-CoA reductase deficiency is an inborn error of metabolism resulting in defective fatty acid oxidation caused by a deficiency of the enzyme 2,4 Dienoyl-CoA reductase. Lysine degradation is also affected in this disorder leading to hyperlysinemia. The disorder is inherited in an autosomal recessive manner, meaning an individual must inherit mutations in "NADK2," located at 5p13.2 from both of their parents. NADK2 encodes the mitochondrial NAD kinase. A defect in this enzyme leads to deficient mitochondrial nicotinamide adenine dinucleotide phosphate levels. 2,4 Dienoyl-CoA reductase, but also lysine degradation are performed by NADP-dependent oxidoreductases explaining how NADK2 deficiency can lead to multiple enzyme defects.
2,4-Dienoyl-CoA reductase deficiency was initially described in 1990 based on a single case of a black female who presented with persistent hypotonia. Laboratory investigations revealed elevated lysine, low levels of carnitine and an abnormal acylcarnitine profile in urine and blood. The abnormal acylcarnitine species was eventually identified as 2-trans,4-cis-decadienoylcarnitine, an intermediate of linoleic acid metabolism. The index case died of respiratory failure at four months of age. Postmortem enzyme analysis on liver and muscle samples revealed decreased 2,4-dienoyl-CoA reductase activity when compared to normal controls. A second case with failure to thrive, developmental delay, lactic acidosis and severe encephalopathy was reported in 2014.
2,4-Dienoyl-CoA reductase deficiency was included as a secondary condition in the American College of Medical Genetics Recommended Uniform Panel for newborn screening. Its status as a secondary condition means there was not enough evidence of benefit to include it as a primary target, but it may be detected during the screening process or as part of a differential diagnosis when detecting conditions included as primary target. Despite its inclusion in newborn screening programs in several states for a number of years, no cases have been identified via neonatal screening.
Mineral deficiency is a lack of dietary minerals, the micronutrients that are needed for an organism's proper health. The cause may be a poor diet, impaired uptake of the minerals that are consumed or a dysfunction in the organism's use of the mineral after it is absorbed. These deficiencies can result in many disorders including anemia and goitre. Examples of mineral deficiency include, zinc deficiency, iron deficiency, and magnesium deficiency.
Urocanic aciduria, also called urocanate hydratase deficiency or urocanase deficiency, is an autosomal recessive metabolic disorder caused by a deficiency of the enzyme urocanase. It is a secondary disorder of histidine metabolism.
Remarks:
- Some GSDs have different forms, e.g. infantile, juvenile, adult (late-onset).
- Some GSDs have different subtypes, e.g. GSD1a / GSD1b, GSD9A1 / GSD9A2 / GSD9B / GSD9C / GSD9D.
- GSD type 0: Although glycogen synthase deficiency does not result in storage of extra glycogen in the liver, it is often classified with the GSDs as type 0 because it is another defect of glycogen storage and can cause similar problems.
- GSD type VIII (GSD 8): In the past it was considered a distinct condition, however it is now classified with GSD type VI or GSD IXa1; it has been described as X-linked recessive inherited.
- GSD type XI (GSD 11): Fanconi-Bickel syndrome, hepatorenal glycogenosis with renal Fanconi syndrome, no longer considered a glycogen storage disease.
- GSD type XIV (GSD 14): Now classed as Congenital disorder of glycosylation type 1 (CDG1T), affects the phosphoglucomutase enzyme (gene PGM1).
- Lafora disease is considered a complex neurodegenerative disease and also a glycogen metabolism disorder.
Galactokinase deficiency, also known as Galactosemia type 2 or GALK deficiency, is an autosomal recessive metabolic disorder marked by an accumulation of galactose and galactitol secondary to the decreased conversion of galactose to galactose-1-phosphate by galactokinase. The disorder is caused by mutations in the GALK1 gene, located on chromosome 17q24. Galactokinase catalyzes the first step of galactose phosphorylation in the Leloir pathway of intermediate metabolism. Galactokinase deficiency is one of the three inborn errors of metabolism that lead to hypergalactosemia. The disorder is inherited as an autosomal recessive trait. Unlike classic galactosemia, which is caused by deficiency of galactose-1-phosphate uridyltransferase, galactokinase deficiency does not present with severe manifestations in early infancy. Its major clinical symptom is the development of cataracts during the first weeks or months of life, as a result of the accumulation, in the lens, of galactitol, a product of an alternative route of galactose utilization. The development of early cataracts in homozygous affected infants is fully preventable through early diagnosis and treatment with a galactose-restricted diet. Some studies have suggested that, depending on milk consumption later in life, heterozygous carriers of galactokinase deficiency may be prone to presenile cataracts at 20–50 years of age.
Symptoms of congenital Type III Galactosemia are apparent from birth, but vary in severity depending on whether the peripheral or generalized disease form is present. Symptoms may include:
- Infantile jaundice
- Infantile hypotonia
- Dysmorphic features
- Sensorineural hearing loss
- Impaired growth
- Cognitive deficiencies
- Depletion of cerebellar Purkinje cells
- Ovarian failure (POI) and hypertrophic hypergonadism
- Liver failure
- Renal failure
- Splenomegaly
- Cataracts
Studies of Type III galactosemia symptoms are mostly descriptive, and precise pathogenic mechanisms remain unknown. This is largely due to a lack of functional animal models of classic galactosemia. The recent development of a "Drosophila melanogaster" GALE mutant exhibiting galactosemic symptoms may yield a promising future animal model.
Galactose epimerase deficiency, also known as GALE deficiency, Galactosemia III and UDP-galactose-4-epimerase deficiency, is a rare, autosomal recessive form of galactosemia associated with a deficiency of the enzyme "galactose epimerase".
Hypertryptophanemia, also called familial hypertryptophanemia, is a rare autosomal recessive metabolic disorder that results in a massive buildup of the amino acid tryptophan in the blood, with associated symptoms and tryptophanuria ("-uria" denotes "in the urine").
Elevated levels of tryptophan are also seen in Hartnup disease, a disorder of amino acid transport. However, the increase of tryptophan in that disorder is negligible when compared to that of hypertryptophanemia.
Hawkinsinuria, also called 4-Alpha-hydroxyphenylpyruvate hydroxylase deficiency, is an autosomal dominant metabolic disorder affecting the metabolism of tyrosine. Normally, the breakdown of the amino acid tyrosine involves the conversion of 4-hydroxyphenylpyruvate to homogentisate by 4-Hydroxyphenylpyruvate dioxygenase. Complete deficiency of this enzyme would lead to tyrosinemia III. In rare cases, however, the enzyme is still able to produce the reactive intermediate 1,2-epoxyphenyl acetic acid, but is unable to convert this intermediate to homogentisate. The intermediate then spontaneously reacts with glutathione to form 2-L-cystein-S-yl-1,4-dihydroxy-cyclohex-5-en-1-yl acetic acid (hawkinsin).
Patients present with metabolic acidosis during the first year of life, which should be treated by a phenylalanine- and tyrosine-restricted diet. The tolerance toward these amino acids normalizes as the patients get older. Then only a chlorine-like smell of the urine indicates the presence of the condition, patients have a normal life and do not require treatment or a special diet.
The production of hawkinsin is the result of a gain-of-function mutation, inheritance of hawkinsinuria is therefore autosomal dominant (presence of a single mutated copy of the gene causes the condition). Most other inborn errors of metabolism are caused by loss-of-function mutations, and hence have recessive inheritance (condition occurs only if both copies are mutated).
Iron (Fe) deficiency is a plant disorder also known as "lime-induced chlorosis". It can be confused with manganese deficiency. A deficiency in the soil is rare but iron can be unavailable for absorption if soil pH is not between about 5 and 6.5. A common problem is excessive alkalinity of the soil (the pH is above 6.5). Also, iron deficiency can develop if the soil is too waterlogged or has been overfertilised. Elements like calcium, zinc, manganese, phosphorus, or copper can tie up iron if they are present in high amounts.
Iron is needed to produce chlorophyll, hence its deficiency causes chlorosis. For example, iron is used in the active site of glutamyl-tRNA reductase, an enzyme needed for the formation of 5-Aminolevulinic acid which is a precursor of heme and chlorophyll.
In non-contiguous patients an aggravated form of adolase-a deficiency has been seen to manifest in muscular deterioration. This is often recognized initially through signs of muscle weakness and exercise intolerance, suggesting rapid muscular fatigue and damage, likely directly related to ATP depletion. This breakdown of muscular fibers or, rhabdomyolysis, can lead to detectable blood creatine phosphate level elevation and potentially exaggerated hyperkalemia.