Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cranial nerve disease is an impaired functioning of one of the twelve cranial nerves. Although it could theoretically be considered a mononeuropathy, it is not considered as such under MeSH.
It is possible for a disorder of more than one cranial nerve to occur at the same time, if a trauma occurs at a location where many cranial nerves run together, such as the jugular fossa. A brainstem lesion could also cause impaired functioning of multiple cranial nerves, but this condition would likely also be accompanied by distal motor impairment.
A neurological examination can test the functioning of individual cranial nerves, and detect specific impairments.
HNA is an episodic disorder; it is characterized by episodes generally lasting 1–6 weeks. During an episode, the nerves of the brachial plexus are targeted by the body as antigens, and the body's immune system begins to degenerate the nerves of the brachial plexus. The exact order or location of the nerve degeneration cannot be predicted before an episode. Other areas of the nervous system that have been affected are the phrenic nerves and the recurrent laryngeal. As the nerves lose function, the muscles associated with those nerves begin to atrophy. In brachial plexus degeneration, atrophy may occur in the deltoid muscles. In phrenic nerve degeneration, the diaphragm may be affected. In this case, breathing can be impaired due to a lack of muscle control of the diaphragm. If the recurrent larangyl nerve is targeted, the pharynx will begin to atrophy and voice function may be lost.
The facial nerve is the seventh of 12 cranial nerves. This cranial nerve controls the muscles in the face. Facial nerve palsy is more abundant in older adults than in children and is said to affect 15-40 out of 100,000 people per year. This disease comes in many forms which include congenital, infectious, traumatic, neoplastic, or idiopathic. The most common cause of this cranial nerve damage is Bell's palsy (idiopathic facial palsy) which is a paralysis of the facial nerve. Although Bell's palsy is more prominent in adults it seems to be found in those younger than 20 or older than 60 years of age. Bell's Palsy is thought to occur by an infection of the herpes virus which may cause demyelination and has been found in patients with facial nerve palsy. Symptoms include flattening of the forehead, sagging of the eyebrow, and difficulty closing the eye and the mouth on the side of the face that is affected. The inability to close the mouth causes problems in feeding and speech. It also causes lack of taste, acrimation, and sialorrhea.
The use of steroids can help in the treatment of Bell's Palsy. If in the early stages, steroids can increase the likelihood of a full recovery. This treatment is used mainly in adults. The use of steroids in children has not been proven to work because they seem to recover completely with or without them. Children also tend to have better recovery rates than older adults. Recovery rate also depends on the cause of the facial nerve palsy (e.g. infections, perinatal injury, congenital dysplastic). If the palsy is more severe patients should seek steroids or surgical procedures. Facial nerve palsy may be the indication of a severe condition and when diagnosed a full clinical history and examination are recommended.
Although rare, facial nerve palsy has also been found in patients with HIV seroconversion. Symptoms found include headaches (bitemporal or occipital), the inability to close the eyes or mouth, and may cause the reduction of taste. Few cases of bilateral facial nerve palsy have been reported and is said to only effect 1 in every 5 million per year.
Symptoms of HNA may include pain in the back, neck, arms, or shoulders, nerve pulls in the arms or back, muscular atrophy, and weakness.
Ischemic stroke selectively affects somatic fibers over parasympathetic fibers, while traumatic stroke affects both types more equally. Therefore, while almost all forms cause ptosis and impaired movement of the eye, pupillary abnormalities are more commonly associated with trauma than with ischemia.
Oculomotor palsy can be of acute onset over hours with symptoms of headache when associated with diabetes mellitus. Diabetic neuropathy of the oculomotor nerve in a majority of cases does not affect the pupil. The sparing of the pupil is thought to be associated with the microfasciculation of the edge fibers which control the pupillomotor fibers, which control the pupil.
Hereditary Neuropathy with Liability to Pressure Palsy (HNPP) is a peripheral neuropathy, a disorder of the nerves. HNPP is a nerve disorder that affects the peripheral nerves,—pressure on the nerves can cause tingling sensations, numbness, pain, weakness, muscle atrophy, and even paralyzation of affected area. In normal individuals these symptoms disappear quickly but in sufferers of HNPP even a short period of pressure can cause the symptoms to occur. Palsies can last from minutes, days to weeks, or even months.
The symptoms may vary—some individuals report minor problems, whilst others experience severe discomfort and disability. In many cases the symptoms are mild enough to go unnoticed. The time period between episodes is known to vary between individuals. HNPP has not been found to alter the lifespan, although in some cases a decline in quality of life is noticed. Some sufferers (10-15%) report various pains growing in severity with progression of the disease. The nerves most commonly affected are the peroneal nerve at the fibular head (leg and feet), the ulnar nerve at the elbow (arm), and the median nerve at the wrist (palm, thumbs and fingers), but any peripheral nerve can be affected. HNPP is part of the group of hereditary motor and sensory neuropathy (HMSN) disorders and is linked to Charcot–Marie–Tooth disease (CMT).
Oculomotor nerve palsy or third nerve palsy is an eye condition resulting from damage to the third cranial nerve or a branch thereof. As the name suggests, the oculomotor nerve supplies the majority of the muscles controlling eye movements. Thus, damage to this nerve will result in the affected individual being unable to move his or her eye normally. In addition, the nerve also supplies the upper eyelid muscle (levator palpebrae superioris) and the muscles responsible for pupil constriction (sphincter pupillae) . The limitations of eye movements resulting from the condition are generally so severe that the affected individual is unable to maintain normal alignment of their eyes when looking straight ahead, leading to strabismus and, as a consequence, double vision (diplopia).
It is also known as "oculomotor neuropathy".
Among the signs/symptoms of hereditary neuropathy with liability to pressure palsy are the following (different symptoms are caused by different nerves, such as the "foot drop" is caused by the "peroneal nerve"):
The most common finding is oculomotor nerve dysfunction leading to ophthalmoplegia. This is often accompanied by ophthalmic nerve dysfunction, leading to hypoesthesia of the upper face. The optic nerve may eventually be involved, with resulting visual impairment.
Five different clinical entities have been described under hereditary sensory and autonomic neuropathies – all characterized by progressive loss of function that predominantly affects the peripheral sensory nerves. Their incidence has been estimated to be about 1 in 25,000.
Differential diagnosis is rarely difficult in adults. Onset is typically sudden with symptoms of horizontal diplopia. Limitations of eye movements are confined to abduction of the affected eye (or abduction of both eyes if bilateral) and the size of the resulting convergent squint or esotropia is always larger on distance fixation - where the lateral rectii are more active - than on near fixation - where the medial rectii are dominant. Abduction limitations which mimic VIth nerve palsy may result secondary to surgery, to trauma or as a result of other conditions such as myasthenia gravis or thyroid eye disease.
In children, differential diagnosis is more difficult because of the problems inherent in getting infants to cooperate with a full eye movement investigation. Possible alternative diagnosis for an abduction deficit would include:
1. Mobius syndrome - a rare congenital disorder in which both VIth and VIIth nerves are bilaterally affected giving rise to a typically 'expressionless' face.
2. Duane's syndrome - A condition in which both abduction and adduction are affected arising as a result of partial innervation of the lateral rectus by branches from the IIIrd oculomotor cranial nerve.
3. Cross fixation which develops in the presence of infantile esotropia or nystagmus blockage syndrome and results in habitual weakness of lateral rectii.
4. Iatrogenic injury. Abducens nerve palsy is also known to occur with halo orthosis placement.The resultant palsy is identified through loss of lateral gaze after application of the orthosis and is the most common cranial nerve injury associated with this device.
The nerve dysfunction induces esotropia, a convergent squint on distance fixation. On near fixation the affected individual may have only a latent deviation and be able to maintain binocularity or have an esotropia of a smaller size. Patients sometimes adopt a face turned towards the side of the affected eye, moving the eye away from the field of action of the affected lateral rectus muscle, with the aim of controlling diplopia and maintaining binocular vision.
Diplopia is typically experienced by adults with VI nerve palsies, but children with the condition may not experience diplopia due to suppression. The neuroplasticity present in childhood allows the child to 'switch off' the information coming from one eye, thus relieving any diplopic symptoms. Whilst this is a positive adaptation in the short term, in the long term it can lead to a lack of appropriate development of the visual cortex giving rise to permanent visual loss in the suppressed eye; a condition known as amblyopia.
Congenital insensitivity to pain with anhidrosis (CIPA), also known as hereditary sensory and autonomic neuropathy type IV (HSAN IV), is characterized by insensitivity to pain, anhidrosis (the inability to sweat), and intellectual disability. The ability to sense all pain (including visceral pain) is absent, resulting in repeated injuries including: oral self-mutilation (biting of tongue, lips, and buccal mucosa); biting of fingertips; bruising, scarring, and infection of the skin; multiple bone fractures (many of which fail to heal properly); and recurrent joint dislocations resulting in joint deformity. Sense of touch, vibration, and position are normal. Anhidrosis predisposes to recurrent febrile episodes that are often the initial manifestation of CIPA. Hypothermia in cold environments also occurs. Intellectual disability of varying degree is observed in most affected individuals; hyperactivity and emotional lability are common.
Hereditary sensory neuropathy type IV (HSN4) is a rare genetic disorder characterized by the loss of sensation (sensory loss), especially in the feet and legs and, less severely, in the hands and forearms. The sensory loss is due to abnormal functioning of small, unmyelinated nerve fibers and portions of the spinal cord that control responses to pain and temperature as well as other involuntary or automatic body processes. Sweating is almost completely absent with this disorder. Intellectual disability is usually present.
Type 4, congenital insensitivity to pain with anhidrosis (CIPA), is an autosomal recessive condition and affected infants present with episodes of hyperthermia unrelated to environmental temperature, anhidrosis and insensitivity to pain. Palmar skin is thickened and charcot joints are commonly present. NCV shows motor and sensory nerve action potentials to be normal. The histopathology of peripheral nerve biopsy reveals absent small unmyelinated fibers and mitochondria are abnormally enlarged.
Management of Hereditary sensory and autonomic neuropathy Type 4:
Treatment of manifestations: Treatment is supportive and is best provided by specialists in pediatrics, orthopedics, dentistry, ophthalmology, and dermatology. For anhidrosis: Monitoring body temperature helps to institute timely measures to prevent/manage hyperthermia or hypothermia. For insensitivity to pain: Modify as much as reasonable a child’s activities to prevent injuries. Inability to provide proper immobilization as a treatment for orthopedic injuries often delays healing; additionally, bracing and invasive orthopedic procedures increase the risk for infection. Methods used to prevent injuries to the lips, buccal mucosa, tongue, and teeth include tooth extraction, and/or filing (smoothing) of the sharp incisal edges of teeth, and/or use of a mouth guard. Skin care with moisturizers can help prevent palmar and plantar hyperkeratosis and cracking and secondary risk of infection; neurotrophic keratitis is best treated with routine care for dry eyes, prevention of corneal infection, and daily observation of the ocular surface. Interventions for behavioral, developmental, and motor delays as well as educational and social support for school-age children and adolescents are recommended.
Prevention of secondary complications: Regular dental examinations and restriction of sweets to prevent dental caries; early treatment of dental caries and periodontal disease to prevent osteomyelitis of the mandible. During and following surgical procedures, potential complications to identify and manage promptly include hyper- or hypothermia and inadequate sedation, which may trigger unexpected movement and result in secondary injuries.
Diagnostic methods vary, and are based on specific possible etiologies; however, an X-ray computed tomography scan of the face (or magnetic resonance imaging, or both) may be helpful.
Facial Synkinesis is a common sequela to Idiopathic Facial Nerve Paralysis, also called Bell’s Palsy or Facial Palsy. Bell’s Palsy, which is thought to occur due to a viral reactivation which can lead (through unknown mechanisms) to diffuse axon demyelination and degeneration of the seventh cranial nerve, results in a hemifacial paralysis due to non-functionality of the nerve. As the nerve attempts to recover, nerve miswiring results (see Mechanism of Action below). In patients with severe facial nerve paralysis, facial synkinesis will inevitably develop.
Additionally, a common treatment option for facial palsy is to use electrical stimulation. Unfortunately, this has been shown to be disruptive to normal re-innervation and can promote the development of synkinesis.
The most common symptoms of facial synkinesis include:
- Eye closure with volitional contraction of mouth muscles
- Midfacial movements with volitional eye closure
- Neck tightness (Platysmal contraction) with volitional smiling
- Hyperlacrimation(also called Crocodile Tears)
- A case where eating provokes excessive lacrimation. This has been attributed to neural interaction between the salivary glands and the lacrimal glands.
Optic neuropathy refers to damage to the optic nerve due to any cause. Damage and death of these nerve cells, or neurons, leads to characteristic features of optic neuropathy.
The main symptom is loss of vision, with colors appearing subtly washed out in the affected eye. On medical examination, the optic nerve head can be visualised by an ophthalmoscope. A pale disc is characteristic of long-standing optic neuropathy. In many cases, only one eye is affected and patients may not be aware of the loss of color vision until the doctor asks them to cover the healthy eye.
Optic neuropathy is often called optic atrophy, to describe the loss of some or most of the fibers of the optic nerve. In medicine, "atrophy" usually means "shrunken but capable of regrowth", so some argue that "optic atrophy" as a pathological term is somewhat misleading, and the term "optic neuropathy" should be used instead.
In short, optic atrophy is the end result of any disease that damages nerve cells anywhere between the retinal ganglion cells and the lateral geniculate body (anterior visual system).
Tumors, infections, and inflammatory processes can cause lesions within the orbit and, less commonly, the optic canal. These lesions may compress the optic nerve, resulting optic disc swelling and progressive visual loss. Implicated orbital disorders include optic gliomas, meningiomas, hemangiomas, lymphangiomas, dermoid cysts, carcinoma, lymphoma, multiple myeloma, inflammatory orbital pseudotumor, and thyroid ophthalmopathy. Patients often have bulging out of the eye (proptosis) with mild color deficits and almost normal vision with disc swelling.
Symptoms of the Roussy–Lévy syndrome mainly stem from nerve damage and the resulting progressive muscle atrophy. Neurological damage may result in absent tendon reflexes (areflexia), some distal sensory loss and decreased excitability of muscles to galvanic and faradic stimulation. Progressive muscle wasting results in weakness of distal limb muscles (especially the peronei), gait ataxia, pes cavus, postural tremors and static tremor of the upper limbs, kyphoscoliosis, and foot deformity.
These symptoms frequently translate into delayed onset of ability to walk, loss of coordination and balance, foot drop, and foot-bone deformities. They are usually first observed during infancy or early childhood, and slowly progress until about age 30, at which point progression may stop in some individuals, or symptoms may continue to slowly progress.
Almost all cases of synkinesis develop as a sequel to nerve trauma (the exception is when it is congenitally acquired as in Duane-Retraction Syndrome and Marcus Gunn phenomenon). Trauma to the nerve can be induced in cases such as surgical procedures, nerve inflammation, neuroma
, and physical injury.
It is characterized by the presence of an oculomotor nerve (CN III) palsy and cerebellar ataxia including tremor and involuntary choreoathetotic movements. Neuroanatomical structures affected include CNIII nucleus, Red nucleus, corticospinal tracts, brachium conjunctivum, and the superior cerebellar peduncle decussation. It has a very similar cause, morphology and signs and symptoms to Weber's syndrome; the main difference between the two being that Weber's is more associated with hemiplegia (i.e. paralysis), and Benedikt's with hemiataxia (i.e. disturbed coordination of movements). It is also similar to Claude's syndrome, but is distinguishable in that Benedikt's has more predominant tremor and choreoathetotic movements while Claude's is more marked by the ataxia.
Benedikt syndrome is caused by a lesion ( infarction, hemorrhage, tumor, or tuberculosis) in the tegmentum of the midbrain and cerebellum. Specifically, the median zone is impaired. It can result from occlusion of the posterior cerebral artery or paramedian penetrating branches of the basilar artery.
NMT is a diverse disorder. As a result of muscular hyperactivity, patients may present with muscle cramps, stiffness, myotonia-like symptoms (slow relaxation), associated walking difficulties, hyperhidrosis (excessive sweating), myokymia (quivering of a muscle), fasciculations (muscle twitching), fatigue, exercise intolerance, myoclonic jerks and other related symptoms. The symptoms (especially the stiffness and fasciculations) are most prominent in the calves, legs, trunk, and sometimes the face and neck, but can also affect other body parts. NMT symptoms may fluctuate in severity and frequency. Symptoms range from mere inconvenience to debilitating. At least a third of people also experience sensory symptoms.
Claude's syndrome is a form of brainstem stroke syndrome characterized by the presence of an ipsilateral oculomotor nerve palsy, contralateral hemiparesis, contralateral ataxia, and contralateral hemiplegia of the lower face, tongue, and shoulder.
Claude's syndrome affects oculomotor nerve, red nucleus and brachium conjunctivum
Weber's syndrome (also known as superior alternating hemiplegia) has a few distinct symptoms: contralateral hemiparesis of limb and facial muscle accompanied by weakness in one or more muscles that control eye movement on the same side. Another symptom that appears is the loss of eye movement due to damage to the oculomotor nerve fibers. The upper and lower extremities have increased weakness.
Parinaud's Syndrome is a cluster of abnormalities of eye movement and pupil dysfunction, characterized by:
1. Paralysis of upgaze: Downward gaze is usually preserved. This vertical palsy is supranuclear, so doll's head maneuver should elevate the eyes, but eventually all upward gaze mechanisms fail.
2. Pseudo-Argyll Robertson pupils: Accommodative paresis ensues, and pupils become mid-dilated and show light-near dissociation.
3. Convergence-Retraction nystagmus: Attempts at upward gaze often produce this phenomenon. On fast up-gaze, the eyes pull in and the globes retract. The easiest way to bring out this reaction is to ask the patient to follow down-going stripes on an optokinetic drum.
4. Eyelid retraction (Collier's sign)
5. Conjugate down gaze in the primary position: "setting-sun sign". Neurosurgeons see this sign most commonly in patients with failed hydrocephalus shunts.
It is also commonly associated with bilateral papilledema. It has less commonly been associated with spasm of accommodation on attempted upward gaze, pseudoabducens palsy (also known as thalamic esotropia) or slower movements of the abducting eye than the adducting eye during horizontal saccades, see-saw nystagmus and associated ocular motility deficits including skew deviation, oculomotor nerve palsy, trochlear nerve palsy and internuclear ophthalmoplegia.