Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of SSADH deficiency fall into three primary categories: neurological, psychiatric, and ocular. The most constant features seen are developmental delay, hypotonia and intellectual disability. Nearly half of patients seen manifest ataxia, behavior problems, seizures, and hyporeflexia.
The age of onset ranges from newborn period to 25 years. Problems unique to neonates can include prematurity, lethargy, decreased sucking, respiratory difficulty and hypoglycemia. Gastrointestinal symptoms have been seen primarily in this
population and are usually related to increased feeding.
Ocular problems related to the disorder include strabismus, nystagmus, retinitis, disc pallor, and oculomotor apraxia.
Over half of the patients with SSADH deficiency have seizures. These include absence, tonic clonic, and convulsive status epilepticus. It is unclear whether decreased levels of GABA or elevated levels of GHB are responsible for these seizures but alterations in these neurotransmitters and their receptor binding or neurotransmitter transport is hypothesized to play a role in the pathogenesis of the seizures in this population.
Symptoms associated with SSADH may be mild, moderate or severe and often vary greatly from case to case. The symptoms of SSADH are caused by the accumulation of GHB in the brain and include the following manifestations (Defined as: common, > 70% of patients; frequent 30-70% of patients;unusual, < 30% of patients):
Common manifestations include:
- Delayed gross motor development
- Delayed mental development
- Delayed fine motor skill development
- Delayed speech and language development
- Hypotonia
Frequent manifestations include:
- Seizures
- Hyporeflexia
- Ataxia
- Behavioral problems
- Hyperkinesis
Unusual manifestations include:
- Neonatal problems
- EEG abnormalities
- Psychoses
- MRI or X-ray computed tomography abnormalities
- Oculomotor apraxia
- Microcephaly
- Macrocephaly
- Hyperreflexia
- Somnolence
- Choreoathetosis
- Myopathy
Succinic semialdehyde dehydrogenase deficiency (SSADHD), also known as 4-hydroxybutyric aciduria or gamma-hydroxybutyric aciduria, is a rare autosomal recessive disorder of the degradation pathway of the inhibitory neurotransmitter γ-aminobutyric acid, or GABA. The disorder has been identified in approximately 350 families, with a significant proportion being consanguineous families. The first case was identified in 1981 and published in a Dutch clinical chemistry journal that highlighted a person with a number of neurological conditions such as delayed intellectual, motor, speech, and language as the most common manifestations. Later cases reported in the early 1990s began to show that hypotonia, hyporeflexia, seizures, and a nonprogressive ataxia were frequent clinical features as well.
SSADH deficiency is caused by an enzyme deficiency in GABA degradation. Under normal conditions, SSADH works with the enzyme GABA transaminase to convert GABA to succinic acid. Succinic acid can then be utilized for energy production via the Krebs cycle. However, because of the deficiency, the final intermediate of the GABA degradation pathway, succinic semialdehyde, accumulates and cannot be oxidized to succinic acid and is therefore reduced to gamma-hydroxybutyric acid (GHB) by gamma-hydroxybutyric dehydrogenase. This causes elevations in GHB and is believed to be the trademark of this disorder and cause for the neurological manifestations seen.
Hartnup disease manifests during infancy with variable clinical presentation: failure to thrive, photosensitivity, intermittent ataxia, nystagmus, and tremor.
Nicotinamide is necessary for neutral amino acid transporter production in the proximal renal tubules found in the kidney, and intestinal mucosal cells found in the small intestine. Therefore, a symptom stemming from this disorder results in increased amounts of amino acids in the urine.
Pellagra, a similar condition, is also caused by low nicotinamide; this disorder results in dermatitis, diarrhea, and dementia.
Hartnup disease is a disorder of amino acid transport in the intestine and kidneys; otherwise, the intestine and kidneys function normally, and the effects of the disease occur mainly in the brain and skin. Symptoms may begin in infancy or early childhood, but sometimes they begin as late as early adulthood. Symptoms may be triggered by sunlight, fever, drugs, or emotional or physical stress. A period of poor nutrition nearly always precedes an attack. The attacks usually become progressively less frequent with age. Most symptoms occur sporadically and are caused by a deficiency of niacinamide. A rash develops on parts of the body exposed to the sun. Mental retardation, short stature, headaches, unsteady gait, and collapsing or fainting are common. Psychiatric problems (such as anxiety, rapid mood changes, delusions, and hallucinations) may also result.
Generally, the majority of individuals with creatine transporter defect express the following symptoms with varying levels of severity: developmental delay and regression, mental retardation, and abnormalities in expressive and cognitive speech. However, several studies have shown a wider variety of symptoms including, but not limited to attention deficit and hyperactivity with impulsivity, myopathy, hypotonia, semantic-pragmatic language disorder, oral dyspraxia, extrapyramidal movement disorder, constipation, absent speech development, seizures, and epilepsy. Furthermore, symptoms can significantly vary between hemizygous males and heterozygous females, although, symptoms are generally more severe in hemizygous males. Hemizygous males more commonly express seizures, growth deficiency, severe mental retardation, and severe expressive language impairment. Heterozygous females more commonly express mild retardation, impairments to confrontational naming and verbal memory, and learning and behavior problems.
Babies with glutaric acidemia type 1 often are born with unusually large heads (macrocephaly). Macrocephaly is amongst the earliest signs of GA1. It is thus important to investigate all cases of macrocephaly of unknown origins for GCDH deficiency, given the importance of the early diagnosis of GA1.
Macrocephaly is a "pivotal clinical sign" of many neurological diseases. Physicians and parents should be aware of the benefits of investigating for an underlying neurological disorder, particularly a neurometabolic one, in children with head circumferences in the highest percentiles.
Affected individuals may have difficulty moving and may experience spasms, jerking, rigidity or decreased muscle tone and muscle weakness (which may be the result of secondary carnitine deficiency). Glutaric aciduria type 1, in many cases, can be defined as a cerebral palsy of genetic origins.
6-Pyruvoyltetrahydropterin synthase deficiency is an autosomal recessive disorder that causes malignant hyperphenylalaninemia due to tetrahydrobiopterin deficiency.
It belongs to the rare diseases. It is a recessive disorder that is accompanied by hyperphenylalaninemia. Commonly reported symptoms are initial truncal hypotonia, subsequent appendicular hypertonia, bradykinesia, cogwheel rigidity, generalized dystonia, and marked diurnal fluctuation. Other reported clinical features include difficulty in swallowing, oculogyric crises, somnolence, irritability, hyperthermia, and seizures. Chorea, athetosis, hypersalivation, rash with eczema, and sudden death have also been reported. Patients with mild phenotypes may deteriorate if given folate antagonists such as methotrexate, which can interfere with a salvage pathway through which dihydrobiopterin is converted into tetrahydrobiopterin via dihydrofolate reductase. Treatment options include substitution with neurotransmitter precursors (levodopa, 5-hydroxytryptophan), monoamine oxidase inhibitors, and tetrahydrobiopterin. Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
Histidinemia is considered benign as most patients remain asymptomatic, early correlational evidence from the first decade of histidinemia research lead to the theory that histidinemia was associated with multiple developmental symptoms including hyperactivity, speech impediment, developmental delay, learning difficulties, and sometimes mental retardation. However, these claims were later deemed coincidental as a large subpopulation of infants that tested positive for histidinemia were found to have normal IQ and speech characteristics; as such histidinemia has since been reclassified as a benign inborn error of metabolism.
Hypertryptophanemia, also called familial hypertryptophanemia, is a rare autosomal recessive metabolic disorder that results in a massive buildup of the amino acid tryptophan in the blood, with associated symptoms and tryptophanuria ("-uria" denotes "in the urine").
Elevated levels of tryptophan are also seen in Hartnup disease, a disorder of amino acid transport. However, the increase of tryptophan in that disorder is negligible when compared to that of hypertryptophanemia.
Type A, which has been identified mostly in people from North America, has moderately severe symptoms that begin in infancy. Characteristic features include developmental delay and a buildup of lactic acid in the blood (lactic acidosis). Increased acidity in the blood can lead to vomiting, abdominal pain, extreme tiredness (fatigue), muscle weakness, and difficulty breathing. In some cases, episodes of lactic acidosis are triggered by an illness or periods without food. Children with pyruvate carboxylase deficiency type A typically survive only into early childhood.
Pyruvate carboxylase deficiency type B has life-threatening signs and symptoms that become apparent shortly after birth. This form of the condition has been reported mostly in Europe, particularly France. Affected infants have severe lactic acidosis, a buildup of ammonia in the blood (hyperammonemia), and liver failure. They experience neurological problems including weak muscle tone (hypotonia), abnormal movements, seizures, and coma. Infants with this form of the condition usually survive for less than 3 months after birth.
Histidinemia, also referred to as histidinuria, is a rare autosomal recessive metabolic disorder caused by a deficiency of the enzyme histidase. Histidase is needed for the metabolism of the amino acid histidine. Although originally thought to be linked to multiple developmental disorders histidinemia is now accepted as a relatively benign disorder, leading to a reduction in the prevalence of neonatal screening procedures.
Depending on the affected gene(s), this disorder may present symptoms that range from mild to life-threatening.
- Stroke
- Progressive encephalopathy
- Seizure
- Kidney failure
- Vomiting
- Dehydration
- Failure to thrive and developmental delays
- Lethargy
- Repeated Yeast infections
- Acidosis
- Hepatomegaly
- Hypotonia
- Pancreatitis
- Respiratory distress
The term fatty acid oxidation disorder (FAOD) is sometimes used, especially when there is an emphasis on the oxidation of the fatty acid.
In addition to the fetal complications, they can also cause complications for the mother during pregnancy.
Examples include:
- trifunctional protein deficiency
- MCADD, LCHADD, and VLCADD
It typically presents as a severe encephalopathy with myoclonic seizures, is rapidly progressive and eventually results in respiratory arrest.Standard evaluation for inborn errors of metabolism and other causes of this presentation does not reveal any abnormality (no acidosis, no hypoglycaemia, or hyperammonaemia and no other organ affected). Pronounced and sustained hiccups in an encephalopathic infant have been described as a typical observation in non-ketotic hyperglycinaemia.
A broad classification for genetic disorders that result from an inability of the body to produce or utilize one enzyme that is required to oxidize fatty acids. The enzyme can be missing or improperly constructed, resulting in it not working. This leaves the body unable to produce energy within the liver and muscles from fatty acid sources.
The body's primary source of energy is glucose; however, when all the glucose in the body has been expended, a normal body digests fats. Individuals with a fatty-acid metabolism disorder are unable to metabolize this fat source for energy, halting bodily processes. Most individuals with a fatty-acid metabolism disorder are able to live a normal active life with simple adjustments to diet and medications.
If left undiagnosed many complications can arise. When in need of glucose the body of a person with a fatty-acid metabolism disorder will still send fats to the liver. The fats are broken down to fatty acids. The fatty acids are then transported to the target cells but are unable to be broken down, resulting in a build-up of fatty acids in the liver and other internal organs.
Fatty-acid metabolism disorders are sometimes classified with the lipid metabolism disorders, but in other contexts they are considered a distinct category.
Creatine transporter defect (CTD) is an inborn error of creatine metabolism in which creatine is not properly transported to the brain and muscles due to defective creatine transporters. CTD is an X-linked disorder caused by mutations in the SLC6A8 gene. The SLC6A8 gene is located on the short arm of the sex chromosome, Xq28. Hemizygous males with CTD express speech and behavior abnormalities, intellectual disabilities, development delay, seizures, and autistic behavior. Heterozygous females with CTD generally express fewer, less severe symptoms. CTD is one of three different types of cerebral creatine deficiency (CCD). The other two types of CCD are guanidinoacetate methyltransferase (GAMT) deficiency and deficiency. Clinical presentation of CTD is similar to that of GAMT and AGAT deficiency. CTD was first identified in 2001 with the presence of a hemizygous nonsense mutation in the SLC6A8 gene in a male patient.
SLOS can present itself differently in different cases, depending on the severity of the mutation and other factors. Originally, SLOS patients were classified into two categories (classic and severe) based on external behaviours, physical characteristics, and other clinical features. Since the discovery of the specific biochemical defect responsible for SLOS, patients are given a severity score based on their levels of cerebral, ocular, oral, and genital defects. It is then used to classify patients as having mild, classical, or severe SLOS.
Hartnup disease (also known as "pellagra-like dermatosis" and "Hartnup disorder") is an autosomal recessive metabolic disorder affecting the absorption of nonpolar amino acids (particularly tryptophan that can be, in turn, converted into serotonin, melatonin, and niacin). Niacin is a precursor to nicotinamide, a necessary component of NAD+.
The causative gene, "SLC6A19", is located on chromosome 5.
A number of abnormalities and symptoms have been observed with hypertryptophanemia.
Musculoskeletal effects include: joint contractures of the elbows and interphalangeal joints of the fingers and thumbs (specifically the distal phalanges), pes planus (fallen arches), an ulnar drift affecting the fingers of both hands (an unusual, yet correctible feature where the fingers slant toward the ulnar side of the forearm), joint pain and laxity, and adduction of the thumbs (where the thumb appears drawn into the palm, related to contracture of the adductor pollicis).
Behavioral, developmental and other anomalies often include: hypersexuality, perceptual hypersensitivity, emotional lability (mood swings), hyperaggressive behavior; hypertelorism (widely-set eyes),
optical strabismus (misalignment) and myopia.
Metabolically, hypertryptophanemia results in tryptophanuria and exhibits significantly elevated serum levels of tryptophan, exceeding 650% of maximum (normal range: 25-73 micromole/l) in some instances.
A product of the bacterial biosynthesis of tryptophan is indole. The excess of tryptophan in hypertryptophanemia also results in substantial excretion of indoleic acids. These findings suggest a possible congenital defect in the metabolic pathway where tryptophan is converted to kynurenine.
Methylmalonic acidemia (MMA), also called methylmalonic aciduria, is an autosomal recessive metabolic disorder. It is a classical type of organic acidemia. The result of this condition is the inability to properly digest specific fats and proteins, which in turn leads to a buildup of a toxic level of methylmalonic acid in the blood.
Methylmalonic acidemia stems from several genotypes, all forms of the disorder usually diagnosed in the early neonatal period, presenting progressive encephalopathy, and secondary hyperammonemia. The disorder can result in death if undiagnosed or left untreated. It is estimated that this disorder has a frequency of 1 in 48,000 births, though the high mortality rate in diagnosed cases make exact determination difficult. Methylmalonic acidemias are found with an equal frequency across ethnic boundaries.
Individuals with Refsum disease present with neurologic damage, cerebellar degeneration, and peripheral neuropathy. Onset is most commonly in childhood/adolescence with a progressive course, although periods of stagnation or remission occur. Symptoms also include ataxia, scaly skin (ichthyosis), difficulty hearing, and eye problems including retinitis pigmentosa, cataracts, and night blindness. In 80% of patients diagnosed with Refsum disease, sensorineural hearing loss has been reported. This is hearing loss as the result of damage to the inner ear or the nerve connected to ear to the brain.
Untreated PKU can lead to intellectual disability, seizures, behavioral problems, and mental disorders. It may also result in a musty smell and lighter skin. Babies born to mothers who have poorly treated PKU may have heart problems, a small head, and low birth weight.
Because the mother's body is able to break down phenylalanine during pregnancy, infants with PKU are normal at birth. The disease is not detectable by physical examination at that time, because no damage has yet been done. However, a blood test can reveal elevated phenylalanine levels after one or two days of normal infant feeding. This is the purpose of newborn screening, to detect the disease with a blood test before any damage is done, so that treatment can prevent the damage from happening.
If a child is not diagnosed during the routine newborn screening test (typically performed 2–7 days after birth, using samples drawn by neonatal heel prick), and a phenylalanine restricted diet is not introduced, then phenylalanine levels in the blood will increase over time. Toxic levels of phenylalanine (and insufficient levels of tyrosine) can interfere with infant development in ways which have permanent effects. The disease may present clinically with seizures, hypopigmentation (excessively fair hair and skin), and a "musty odor" to the baby's sweat and urine (due to phenylacetate, a carboxylic acid produced by the oxidation of phenylketone). In most cases, a repeat test should be done at approximately two weeks of age to verify the initial test and uncover any phenylketonuria that was initially missed.
Untreated children often fail to attain early developmental milestones, develop microcephaly, and demonstrate progressive impairment of cerebral function. Hyperactivity, EEG abnormalities, and seizures, and severe learning disabilities are major clinical problems later in life. A characteristic "musty or mousy" odor on the skin, as well as a predisposition for eczema, persist throughout life in the absence of treatment.
The damage done to the brain if PKU is untreated during the first months of life is not reversible. It is critical to control the diet of infants with PKU very carefully so that the brain has an opportunity to develop normally. Affected children who are detected at birth and treated are much less likely to develop neurological problems or have seizures and intellectual disability (though such clinical disorders are still possible.)
In general, however, outcomes for people treated for PKU are good. Treated people may have no detectable physical, neurological, or developmental problems at all. Many adults with PKU who were diagnosed through newborn screening and have been treated since birth have high educational achievement, successful careers, and fulfilling family lives.
Glycine encephalopathy (also known as non-ketotic hyperglycinemia or NKH) is a rare autosomal recessive disorder of glycine metabolism. After phenylketonuria, glycine encephalopathy is the second most common disorder of amino acid metabolism. The disease is caused by defects in the glycine cleavage system, an enzyme responsible for glycine catabolism. There are several forms of the disease, with varying severity of symptoms and time of onset. The symptoms are exclusively neurological in nature, and clinically this disorder is characterized by abnormally high levels of the amino acid glycine in bodily fluids and tissues, especially the cerebral spinal fluid.
Glycine encephalopathy is sometimes referred to as "nonketotic hyperglycinemia" (NKH), as a reference to the biochemical findings seen in patients with the disorder, and to distinguish it from the disorders that cause "ketotic hyperglycinemia" (seen in propionic acidemia and several other inherited metabolic disorders). To avoid confusion, the term "glycine encephalopathy" is often used, as this term more accurately describes the clinical symptoms of the disorder.
Symptoms categorized as physically visible symptoms include chorea, dystonia, spasticity, and rigidity, all physical symptoms of the body associated with movement disorders. The symptoms accompanying neuroferritinopathy affecting movement are also progressive, becoming more generalized with time. Usually during the first ten years of onset of the disease only one or two limbs are directly affected.
Distinctive symptoms of neuroferritinopathy are chorea, found in 50% of diagnosed patients, dystonia, found in 43% of patients, and parkinsonism, found in 7.5% of patients. Full control of upper limbs on the body generally remains until late onset of the disease. Over time, symptoms seen in a patient can change from one side of the body to the opposite side of the body, jumping from left to right or vice versa. Another route that the physically visible symptoms have been observed to take is the appearance, disappearance, and then reappearance once more of specific symptoms.
While these symptoms are the classic indicators of neuroferritinopathy, symptoms will vary from patient to patient.