Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hartnup disease manifests during infancy with variable clinical presentation: failure to thrive, photosensitivity, intermittent ataxia, nystagmus, and tremor.
Nicotinamide is necessary for neutral amino acid transporter production in the proximal renal tubules found in the kidney, and intestinal mucosal cells found in the small intestine. Therefore, a symptom stemming from this disorder results in increased amounts of amino acids in the urine.
Pellagra, a similar condition, is also caused by low nicotinamide; this disorder results in dermatitis, diarrhea, and dementia.
Hartnup disease is a disorder of amino acid transport in the intestine and kidneys; otherwise, the intestine and kidneys function normally, and the effects of the disease occur mainly in the brain and skin. Symptoms may begin in infancy or early childhood, but sometimes they begin as late as early adulthood. Symptoms may be triggered by sunlight, fever, drugs, or emotional or physical stress. A period of poor nutrition nearly always precedes an attack. The attacks usually become progressively less frequent with age. Most symptoms occur sporadically and are caused by a deficiency of niacinamide. A rash develops on parts of the body exposed to the sun. Mental retardation, short stature, headaches, unsteady gait, and collapsing or fainting are common. Psychiatric problems (such as anxiety, rapid mood changes, delusions, and hallucinations) may also result.
The symptoms of SSADH deficiency fall into three primary categories: neurological, psychiatric, and ocular. The most constant features seen are developmental delay, hypotonia and intellectual disability. Nearly half of patients seen manifest ataxia, behavior problems, seizures, and hyporeflexia.
The age of onset ranges from newborn period to 25 years. Problems unique to neonates can include prematurity, lethargy, decreased sucking, respiratory difficulty and hypoglycemia. Gastrointestinal symptoms have been seen primarily in this
population and are usually related to increased feeding.
Ocular problems related to the disorder include strabismus, nystagmus, retinitis, disc pallor, and oculomotor apraxia.
Over half of the patients with SSADH deficiency have seizures. These include absence, tonic clonic, and convulsive status epilepticus. It is unclear whether decreased levels of GABA or elevated levels of GHB are responsible for these seizures but alterations in these neurotransmitters and their receptor binding or neurotransmitter transport is hypothesized to play a role in the pathogenesis of the seizures in this population.
Symptoms associated with SSADH may be mild, moderate or severe and often vary greatly from case to case. The symptoms of SSADH are caused by the accumulation of GHB in the brain and include the following manifestations (Defined as: common, > 70% of patients; frequent 30-70% of patients;unusual, < 30% of patients):
Common manifestations include:
- Delayed gross motor development
- Delayed mental development
- Delayed fine motor skill development
- Delayed speech and language development
- Hypotonia
Frequent manifestations include:
- Seizures
- Hyporeflexia
- Ataxia
- Behavioral problems
- Hyperkinesis
Unusual manifestations include:
- Neonatal problems
- EEG abnormalities
- Psychoses
- MRI or X-ray computed tomography abnormalities
- Oculomotor apraxia
- Microcephaly
- Macrocephaly
- Hyperreflexia
- Somnolence
- Choreoathetosis
- Myopathy
Hypertryptophanemia, also called familial hypertryptophanemia, is a rare autosomal recessive metabolic disorder that results in a massive buildup of the amino acid tryptophan in the blood, with associated symptoms and tryptophanuria ("-uria" denotes "in the urine").
Elevated levels of tryptophan are also seen in Hartnup disease, a disorder of amino acid transport. However, the increase of tryptophan in that disorder is negligible when compared to that of hypertryptophanemia.
Some of the possible symptoms that can occur with metabolic disorders are: lethargy, weight loss, jaundice, seizures, to name a few. The symptoms expressed would vary with the type of metabolic disorder. There are four categories of symptoms: acute symptoms, late-onset acute symptoms, progressive general symptoms and permanent symptoms.
People with methylmalonyl CoA mutase deficiency exhibit many symptoms similar to other diseases involving inborn errors of metabolism. Sometimes the symptoms appear shortly after birth, but other times the onset of symptoms is later.
Newborn babies experience with vomiting, acidosis, hyperammonemia, hepatomegaly (enlarged livers), hyperglycinemia (high glycine levels), and hypoglycemia (low blood sugar). Later, cases of thrombocytopenia and neutropenia can occur.
In some cases intellectual and developmental disabilities, such as autism, were noted with increased frequency in populations with methylmalonyl-CoA mutase deficiency.
Hartnup disease (also known as "pellagra-like dermatosis" and "Hartnup disorder") is an autosomal recessive metabolic disorder affecting the absorption of nonpolar amino acids (particularly tryptophan that can be, in turn, converted into serotonin, melatonin, and niacin). Niacin is a precursor to nicotinamide, a necessary component of NAD+.
The causative gene, "SLC6A19", is located on chromosome 5.
Histidinemia is considered benign as most patients remain asymptomatic, early correlational evidence from the first decade of histidinemia research lead to the theory that histidinemia was associated with multiple developmental symptoms including hyperactivity, speech impediment, developmental delay, learning difficulties, and sometimes mental retardation. However, these claims were later deemed coincidental as a large subpopulation of infants that tested positive for histidinemia were found to have normal IQ and speech characteristics; as such histidinemia has since been reclassified as a benign inborn error of metabolism.
Typically, initial signs and symptoms of this disorder occur during infancy and include low blood sugar (hypoglycemia), lack of energy (lethargy), and muscle weakness. There is also a high risk of complications such as liver abnormalities and life-threatening heart problems. Symptoms that begin later in childhood, adolescence, or adulthood tend to be milder and usually do not involve heart problems. Episodes of very long-chain acyl-coenzyme A dehydrogenase deficiency can be triggered by periods of fasting, illness, and exercise.
It is common for babies and children with the early and childhood types of VLCADD to have episodes of illness called metabolic crises. Some of the first symptoms of a metabolic crisis are: extreme sleepiness, behavior changes, irritable mood, poor appetite.
Some of these other symptoms of VLCADD in infants may also follow: fever, nausea, diarrhea, vomiting, hypoglycemia.
It is difficult to determine the prevalence of hyperprolinemia type I, as many people with the condition are asymptomatic.
People with hyperprolinemia type I have proline levels in their blood between 3 and 10 times the normal level. Some individuals with type I exhibit seizures, intellectual disability, or other neurological problems.
Hyperprolinemia type II results in proline levels in the blood between 10 and 15 times higher than normal, and high levels of a related compound called pyrroline-5-carboxylate. This rare form of the disorder may appear benign at times, but often involves seizures, convulsions, and intellectual disability.
Hyperprolinemia can also occur with other conditions, such as malnutrition or liver disease. In particular, individuals with conditions that cause elevated levels of lactic acid in the blood, such as lactic acidemia, are likely to have elevated proline levels, because lactic acid inhibits the breakdown of proline.
The term fatty acid oxidation disorder (FAOD) is sometimes used, especially when there is an emphasis on the oxidation of the fatty acid.
In addition to the fetal complications, they can also cause complications for the mother during pregnancy.
Examples include:
- trifunctional protein deficiency
- MCADD, LCHADD, and VLCADD
A number of abnormalities and symptoms have been observed with hypertryptophanemia.
Musculoskeletal effects include: joint contractures of the elbows and interphalangeal joints of the fingers and thumbs (specifically the distal phalanges), pes planus (fallen arches), an ulnar drift affecting the fingers of both hands (an unusual, yet correctible feature where the fingers slant toward the ulnar side of the forearm), joint pain and laxity, and adduction of the thumbs (where the thumb appears drawn into the palm, related to contracture of the adductor pollicis).
Behavioral, developmental and other anomalies often include: hypersexuality, perceptual hypersensitivity, emotional lability (mood swings), hyperaggressive behavior; hypertelorism (widely-set eyes),
optical strabismus (misalignment) and myopia.
Metabolically, hypertryptophanemia results in tryptophanuria and exhibits significantly elevated serum levels of tryptophan, exceeding 650% of maximum (normal range: 25-73 micromole/l) in some instances.
A product of the bacterial biosynthesis of tryptophan is indole. The excess of tryptophan in hypertryptophanemia also results in substantial excretion of indoleic acids. These findings suggest a possible congenital defect in the metabolic pathway where tryptophan is converted to kynurenine.
This disorder usually appears in the first few months of life, when development of new motor and cognitive skills becomes delayed or stops. Eventually, affected children may lose previously acquired skills such as head control or the ability to sit unsupported.
Signs and symptoms of a biotinidase deficiency can appear several days after birth. These include seizures, hypotonia and muscle/limb weakness, ataxia, paresis, hearing loss, optic atrophy, skin rashes (including seborrheic dermatitis and psoriasis), and alopecia. If left untreated, the disorder can rapidly lead to coma and death.
Biotinidase deficiency can also appear later in life. This is referred to as "late-onset" biotinidase deficiency. The symptoms are similar, but perhaps more mild, because if an individual survives the neonatal period they likely have some residual activity of biotin-related enzymes. Studies have noted individuals who were asymptomatic until adolescence or early adulthood. One study pointed out that untreated individuals may not show symptoms until age 21. Furthermore, in rare cases, even individuals with profound deficiencies of biotinidase can be asymptomatic.
Symptom severity is predictably correlated with the severity of the enzyme defect. Profound biotinidase deficiency refers to situations where enzyme activity is 10% or less. Individuals with partial biotinidase deficiency may have enzyme activity of 10-30%.
Functionally, there is no significant difference between dietary biotin deficiency and genetic loss of biotin-related enzyme activity. In both cases, supplementation with biotin can often restore normal metabolic function and proper catabolism of leucine and isoleucine.
The symptoms of biotinidase deficiency (and dietary deficiency of biotin) can be quite severe. A 2004 case study from Metametrix detailed the effects of biotin deficiency, including aggression, cognitive delay, and reduced immune function.
If a metabolic crisis is not treated, a child with VLCADD can develop: breathing problems, seizures, coma, sometimes leading to death.
Succinic semialdehyde dehydrogenase deficiency (SSADHD), also known as 4-hydroxybutyric aciduria or gamma-hydroxybutyric aciduria, is a rare autosomal recessive disorder of the degradation pathway of the inhibitory neurotransmitter γ-aminobutyric acid, or GABA. The disorder has been identified in approximately 350 families, with a significant proportion being consanguineous families. The first case was identified in 1981 and published in a Dutch clinical chemistry journal that highlighted a person with a number of neurological conditions such as delayed intellectual, motor, speech, and language as the most common manifestations. Later cases reported in the early 1990s began to show that hypotonia, hyporeflexia, seizures, and a nonprogressive ataxia were frequent clinical features as well.
SSADH deficiency is caused by an enzyme deficiency in GABA degradation. Under normal conditions, SSADH works with the enzyme GABA transaminase to convert GABA to succinic acid. Succinic acid can then be utilized for energy production via the Krebs cycle. However, because of the deficiency, the final intermediate of the GABA degradation pathway, succinic semialdehyde, accumulates and cannot be oxidized to succinic acid and is therefore reduced to gamma-hydroxybutyric acid (GHB) by gamma-hydroxybutyric dehydrogenase. This causes elevations in GHB and is believed to be the trademark of this disorder and cause for the neurological manifestations seen.
Urocanic aciduria is thought to be relatively benign. Although aggressive behavior and mental retardation have been reported with the disorder, no definitive neurometabolic connection has yet been established.
Histidinemia, also referred to as histidinuria, is a rare autosomal recessive metabolic disorder caused by a deficiency of the enzyme histidase. Histidase is needed for the metabolism of the amino acid histidine. Although originally thought to be linked to multiple developmental disorders histidinemia is now accepted as a relatively benign disorder, leading to a reduction in the prevalence of neonatal screening procedures.
Because of the enormous number of these diseases and wide range of systems affected, nearly every "presenting complaint" to a doctor may have a congenital metabolic disease as a possible cause, especially in childhood. The following are examples of potential manifestations affecting each of the major organ systems.
Biotinidase deficiency is an autosomal recessive metabolic disorder in which biotin is not released from proteins in the diet during digestion or from normal protein turnover in the cell. This situation results in biotin deficiency.
Biotin, also called vitamin B, is an important water-soluble nutrient that aids in the metabolism of fats, carbohydrates, and proteins. Biotin deficiency can result in behavioral disorders, lack of coordination, learning disabilities and seizures. Biotin supplementation can alleviate and sometimes totally stop such symptoms.
People with guanidinoacetate methyltransferase deficiency have a wide spectrum of neurological symptoms. In addition to developmental disability and muscle weakness, some children with this disorder experience seizures. They may also develop autistic behaviors that affect communication and social interaction. Some affected children exhibit certain involuntary movements such as tremors or facial tics.
Guanidinoacetate methyltransferase deficiency is a very rare disorder. Only a few dozen affected individuals have been reported worldwide. Of these, approximately one third are of Portuguese origin.
A broad classification for genetic disorders that result from an inability of the body to produce or utilize one enzyme that is required to oxidize fatty acids. The enzyme can be missing or improperly constructed, resulting in it not working. This leaves the body unable to produce energy within the liver and muscles from fatty acid sources.
The body's primary source of energy is glucose; however, when all the glucose in the body has been expended, a normal body digests fats. Individuals with a fatty-acid metabolism disorder are unable to metabolize this fat source for energy, halting bodily processes. Most individuals with a fatty-acid metabolism disorder are able to live a normal active life with simple adjustments to diet and medications.
If left undiagnosed many complications can arise. When in need of glucose the body of a person with a fatty-acid metabolism disorder will still send fats to the liver. The fats are broken down to fatty acids. The fatty acids are then transported to the target cells but are unable to be broken down, resulting in a build-up of fatty acids in the liver and other internal organs.
Fatty-acid metabolism disorders are sometimes classified with the lipid metabolism disorders, but in other contexts they are considered a distinct category.
Hawkinsinuria, also called 4-Alpha-hydroxyphenylpyruvate hydroxylase deficiency, is an autosomal dominant metabolic disorder affecting the metabolism of tyrosine. Normally, the breakdown of the amino acid tyrosine involves the conversion of 4-hydroxyphenylpyruvate to homogentisate by 4-Hydroxyphenylpyruvate dioxygenase. Complete deficiency of this enzyme would lead to tyrosinemia III. In rare cases, however, the enzyme is still able to produce the reactive intermediate 1,2-epoxyphenyl acetic acid, but is unable to convert this intermediate to homogentisate. The intermediate then spontaneously reacts with glutathione to form 2-L-cystein-S-yl-1,4-dihydroxy-cyclohex-5-en-1-yl acetic acid (hawkinsin).
Patients present with metabolic acidosis during the first year of life, which should be treated by a phenylalanine- and tyrosine-restricted diet. The tolerance toward these amino acids normalizes as the patients get older. Then only a chlorine-like smell of the urine indicates the presence of the condition, patients have a normal life and do not require treatment or a special diet.
The production of hawkinsin is the result of a gain-of-function mutation, inheritance of hawkinsinuria is therefore autosomal dominant (presence of a single mutated copy of the gene causes the condition). Most other inborn errors of metabolism are caused by loss-of-function mutations, and hence have recessive inheritance (condition occurs only if both copies are mutated).
Urocanic aciduria, also called urocanate hydratase deficiency or urocanase deficiency, is an autosomal recessive metabolic disorder caused by a deficiency of the enzyme urocanase. It is a secondary disorder of histidine metabolism.
Inherited metabolic disorders are one cause of metabolic disorders, and occur when a defective gene causes an enzyme deficiency. These diseases, of which there are many subtypes, are known as inborn errors of metabolism. Metabolic diseases can also occur when the liver or pancreas do not function properly.