Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of the signs/symptoms of medullary cystic kidney disease, the disease is not easy to diagnose and is uncommon. In this condition, loss of kidney function occurs slowly over time, however the following signs/symptoms could be observed in an affected individual:
Some individuals with this disease develop gout, which is a condition in which patients develop severe pain and swelling in the big toe or another joint such as the knee. If untreated, it becomes chronic and affects the joints most of the time, instead of intermittently.
Signs and symptoms include high blood pressure, headaches, abdominal pain, blood in the urine, and excessive urination. Other symptoms include pain in the back, and cyst formation (renal and other organs).
Acute kidney injuries can be present on top of chronic kidney disease, a condition called acute-on-chronic kidney failure (AoCRF). The acute part of AoCRF may be reversible, and the goal of treatment, as with AKI, is to return the patient to baseline kidney function, typically measured by serum creatinine. Like AKI, AoCRF can be difficult to distinguish from chronic kidney disease if the patient has not been monitored by a physician and no baseline (i.e., past) blood work is available for comparison.
Chronic kidney disease (CKD) can also develop slowly and, initially, show few symptoms. CKD can be the long term consequence of irreversible acute disease or part of a disease progression.
Medullary cystic kidney disease (MCKD) is an autosomal dominant kidney disorder characterized by tubulointerstitial sclerosis leading to end-stage renal disease. Because the presence of cysts is neither an early nor a typical diagnostic feature of the disease, and because at least 4 different gene mutations may give rise to the condition, the name autosomal dominant tubulointerstitial kidney disease (ADTKD) has been proposed, to be appended with the underlying genetic variant for a particular individual. Importantly, if cysts are found in the medullary collecting ducts they can result in a shrunken kidney, unlike that of polycystic kidney disease. There are two known forms of medullary cystic kidney disease, mucin-1 kidney disease 1 (MKD1) and mucin-2 kidney disease/uromodulin kidney disease (MKD2). A third form of the disease occurs due to mutations in the gene encoding renin (ADTKD-REN), and has formerly been known as familial juvenile hyperuricemic nephropathy type 2.
Polycystic kidney disease (PKD or PCKD, also known as polycystic kidney syndrome) is a genetic disorder in which the renal tubules become structurally abnormal, resulting in the development and growth of multiple cysts within the kidney. These cysts may begin to develop before birth or in infancy, in childhood, or in adulthood. Cysts are non-functioning tubules filled with fluid pumped into them, which range in size from microscopic to enormous, crushing adjacent normal tubules and eventually rendering them non-functional also.
PKD is caused by abnormal genes which produce a specific abnormal protein which has an adverse affect on tubule development. PKD is a general term for two types, each having their own pathology and genetic cause: autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD). The abnormal gene exists in all cells in the body: as a result, cysts may occur in the liver, seminal vesicles, and pancreas. This genetic defect can also cause aortic root aneurysms, and aneurysms in the circle of Willis cerebral arteries, which if they rupture, can cause a subarachnoid hemorrhage.
Diagnosis may be suspected from one, some, or all of the following: new onset flank pain or red urine; a positive family history; palpation of enlarged kidneys on physical exam; an incidental finding on abdominal sonogram; or an incidental finding of abnormal kidney function on routine lab work (BUN, serum creatinine, or eGFR). Definitive diagnosis is made by abdominal CT exam.
Complications include hypertension due to the activation of the renin–angiotensin–aldosterone system (RAAS), frequent cyst infections, urinary bleeding, and declining renal function. Hypertension is treated with angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs). Infections are treated with antibiotics. Declining renal function is treated with renal replacement therapy (RRT): dialysis and/or transplantation. Management from the time of the suspected or definitive diagnosis is by a board-certified nephrologist.
Though this condition is usually asymptomatic, if symptoms are present they are usually related to the causative process, (e.g. hypercalcemia). Some of the sympotoms that can happen are blood in the urine, fever and chills, nausea and vomiting, severe pain in the belly area, flanks of the back, groin, or testicles.
These include renal colic, polyuria and polydipsia:
- Renal colic is usually caused by pre-existing nephrolithiasis, as may occur in patients with chronic hypercalciuria. Less commonly, it can result from calcified bodies moving into the calyceal system.
- Nocturia, polyuria, and polydipsia from reduced urinary concentrating capacity (i.e. nephrogenic diabetes insipidus) as can be seen in hypercalcemia, medullary nephrocalcinosis of any cause, or in children with Bartter syndrome in whom essential tubular salt reabsorption is compromised.
There are several causes of nephrocalcinosis that are typically acute and present only with renal failure. These include tumor lysis syndrome, acute phosphate nephropathy, and occasional cases of enteric hyperoxaluria.
Dent's disease often produces the following signs and symptoms:
- Extreme thirst combined with dehydration, which leads to frequent urination
- Nephrolithiasis (kidney stones)
- Hypercalciuria (high urine calcium - >300 mg/d or >4 mg/kg per d) with normal levels blood/serum calcium)
- Aminoaciduria (amino acids in urine)
- Phosphaturia (phosphate in urine)
- Glycosuria (glucose in urine)
- Kaliuresis (potassium in urine)
- Hyperuricosuria (excessive amounts of uric acid in the urine)
- Impaired urinary acidification
- Rickets
In a study of 25 patients with Dent's disease, 9 of 15 men, and one of 10 women suffered end-stage kidney disease by the age of 47.
Nephrocalcinosis, once known as Albright's calcinosis after Fuller Albright, or Anderson-Carr kidneys, is a term originally used to describe deposition of calcium salts in the renal parenchyma due to hyperparathyroidism. The term nephrocalcinosis is used to describe the deposition of both calcium oxalate and calcium phosphate. It may cause acute kidney injury. It is now more commonly used to describe diffuse, fine, renal parenchymal calcification on radiology. It is caused by multiple different conditions and is determined progressive kidney dysfunction. These outlines eventually come together to form a dense mass. During its early stages, nephrocalcinosis is visible on x-ray, and appears as a fine granular mottling over the renal outlines. It is most commonly seen as an incidental finding with medullary sponge kidney on an abdominal x-ray.
However, it may be severe enough to cause (as well as be caused by) renal tubular acidosis or even end stage renal failure, due to disruption of the renal tissue by the deposited calcium.
The clinical picture is often dominated by the underlying cause.The symptoms of acute kidney injury result from the various disturbances of kidney function that are associated with the disease. Accumulation of urea and other nitrogen-containing substances in the bloodstream lead to a number of symptoms, such as fatigue, loss of appetite, headache, nausea and vomiting. Marked increases in the potassium level can lead to abnormal heart rhythms, which can be severe and life-threatening. Fluid balance is frequently affected, though blood pressure can be high, low or normal.
Pain in the flanks may be encountered in some conditions (such as clotting of the kidneys' blood vessels or inflammation of the kidney); this is the result of stretching of the fibrous tissue capsule surrounding the kidney. If the kidney injury is the result of dehydration, there may be thirst as well as evidence of fluid depletion on physical examination. Physical examination may also provide other clues as to the underlying cause of the kidney problem, such as a rash in interstitial nephritis (or vasculitis) and a palpable bladder in obstructive nephropathy.
Acute tubular necrosis is classified as a "renal" (i.e. not pre-renal or post-renal) cause of acute kidney injury. Diagnosis is made by a FENa (fractional excretion of sodium) > 3% and presence of muddy casts (a type of granular cast) in urinalysis. On histopathology, there is usually "tubulorrhexis", that is, localized necrosis of the epithelial lining in renal tubules, with focal rupture or loss of basement membrane. Proximal tubule cells can shed with variable viability and not be purely "necrotic".
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent, potentially lethal, monogenic human disorder. It is associated with large interfamilial and intrafamilial variability, which can be explained to a large extent by its genetic heterogeneity and modifier genes. It is also the most common of the inherited cystic kidney diseases — a group of disorders with related but distinct pathogenesis, characterized by the development of renal cysts and various extrarenal manifestations, which in case of ADPKD include cysts in other organs, such as the liver, seminal vesicles, pancreas, and arachnoid membrane, as well as other abnormalities, such as intracranial aneurysms and dolichoectasias, aortic root dilatation and aneurysms, mitral valve prolapse, and abdominal wall hernias. Over 50% of patients with ADPKD eventually develop end stage kidney disease and require dialysis or kidney transplantation. ADPKD is estimated to affect at least 1 in every 1000 individuals worldwide, making this disease the most common inherited kidney disorder with a diagnosed prevalence of 1:2000 and incidence of 1:3000-1:8000 in a global scale.
Acute tubular necrosis (ATN) is a medical condition involving the death of tubular epithelial cells that form the renal tubules of the kidneys. ATN presents with acute kidney injury (AKI) and is one of the most common causes of AKI. Common causes of ATN include low blood pressure and use of nephrotoxic drugs. The presence of "muddy brown casts" of epithelial cells found in the urine during urinalysis is pathognomonic for ATN. Management relies on aggressive treatment of the factors that precipitated ATN (e.g. hydration and cessation of the offending drug). Because the tubular cells continually replace themselves, the overall prognosis for ATN is quite good if the cause is corrected, and recovery is likely within 7 to 21 days.
Kidney disease is a non-communicable disease, having serious consequences if it cannot be controlled effectively. Generally, the process of kidney disease development is from light to serious. Some kidney diseases can cause renal failure.
Kidney disease, also known as nephropathy or renal disease, is damage to or disease of a kidney. Nephritis is inflammatory kidney disease. Nephrosis is noninflammatory kidney disease. Kidney disease usually causes kidney failure to some degree, with the amount depending on the type of disease. In precise usage, "disease" denotes the structural and causal disease entity whereas "failure" denotes the impaired kidney function. In common usage these meanings overlap; for example, the terms "chronic kidney disease" and "chronic renal failure" are usually considered synonymous. Acute kidney disease has often been called acute renal failure, although nephrologists now often tend to call it acute kidney injury. About 1 in 8 Americans suffer from chronic kidney disease.
Symptoms (and signs) consistent with renal papillary necrosis are:
Chronic kidney disease (CKD) is a type of kidney disease in which there is gradual loss of kidney function over a period of months or years. Early on there are typically no symptoms. Later, leg swelling, feeling tired, vomiting, loss of appetite, or confusion may develop. Complications may include heart disease, high blood pressure, bone disease, or anemia.
Causes of chronic kidney disease include diabetes, high blood pressure, glomerulonephritis, and polycystic kidney disease. Risk factors include a family history of the condition. Diagnosis is generally by blood tests to measure the glomerular filtration rate and urine tests to measure albumin. Further tests such as an ultrasound or kidney biopsy may be done to determine the underlying cause. A number of different classification systems exist.
Screening at-risk people is recommended. Initial treatments may include medications to manage blood pressure, blood sugar, and lower cholesterol. NSAIDs should be avoided. Other recommended measures include staying active and certain dietary changes. Severe disease may require hemodialysis, peritoneal dialysis, or a kidney transplant. Treatments for anemia and bone disease may also be required.
Chronic kidney disease affected about 323 million people globally in 2015. In 2015 it resulted in 1.2 million deaths, up from 409,000 in 1990. The causes that contribute to the greatest number of deaths are high blood pressure at 550,000, followed by diabetes at 418,000, and glomerulonephritis at 238,000.
The buildup of oxalate in the body causes increased renal excretion of oxalate (hyperoxaluria), which in turn results in renal and bladder stones. Stones cause urinary obstruction (often with severe and acute pain), secondary infection of urine and eventually kidney damage.
Oxalate stones in primary hyperoxaluria tend to be severe, resulting in relatively early kidney damage (say teenage, early adulthood), which impairs the excretion of oxalate leading to a further acceleration in accumulation of oxalate in the body.
After the development of renal failure patients may get deposits of oxalate in the bones, joints and bone marrow. Severe cases may develop haematological problems such as anaemia and thrombocytopaenia. The deposition of oxalate in the body is sometimes called "oxalosis" to be distinguished from "oxaluria" which refers to oxalate in the urine.
Renal failure is a serious complication requiring treatment in its own right. Dialysis can control renal failure but tends to be inadequate to dispose of excess oxalate. Renal transplant is more effective and this is the primary treatment of severe hyperoxaluria. Liver transplantation (often in addition to renal transplant) may be able to control the disease by correcting the metabolic defect.
In a proportion of patients with primary hyperoxaluria type 1 (about 5%), pyridoxine treatment (vitamin B6) may decrease oxalate excretion and prevent kidney stone formation.
Primary hyperoxaluria is an autosomal recessive disease, meaning both copies of the gene contain the mutation. Both parents must have one copy of this mutated gene to pass it on to their child, but they do not typically show signs or symptoms of the disease.
CKD is initially without specific symptoms and is generally only detected as an increase in serum creatinine or protein in the urine. As the kidney function decreases:
- Blood pressure is increased due to fluid overload and production of vasoactive hormones created by the kidney via the renin-angiotensin system, increasing one's risk of developing hypertension and/or suffering from congestive heart failure.
- Urea accumulates, leading to azotemia and ultimately uremia (symptoms ranging from lethargy to pericarditis and encephalopathy). Due to its high systemic circulation, urea is excreted in eccrine sweat at high concentrations and crystallizes on skin as the sweat evaporates ("uremic frost").
- Potassium accumulates in the blood (hyperkalemia with a range of symptoms including malaise and potentially fatal cardiac arrhythmias). Hyperkalemia usually does not develop until the glomerular filtration rate falls to less than 20–25 ml/min/1.73 m, at which point the kidneys have decreased ability to excrete potassium. Hyperkalemia in CKD can be exacerbated by acidemia (which leads to extracellular shift of potassium) and from lack of insulin.
- Erythropoietin synthesis is decreased causing anemia.
- Fluid volume overload symptoms may range from mild edema to life-threatening pulmonary edema.
- Hyperphosphatemia, due to reduced phosphate excretion, follows the decrease in glomerular filtration. Hyperphosphatemia is associated with increased cardiovascular risk, being a direct stimulus to vascular calcification. Moreover, circulating concentrations of fibroblast growth factor-23 (FGF-23) increase progressively as the renal capacity for phosphate excretion declines, but this adaptative response may also contribute to left ventricular hypertrophy and increased mortality in CKD patients.
- Hypocalcemia, due to 1,25 dihydroxyvitamin D deficiency (caused by stimulation of FGF-23 and reduction of renal mass), and resistance to the calcemic action of parathyroid hormone. Osteocytes are responsible for the increased production of FGF-23, which is a potent inhibitor of the enzyme 1-alpha-hydroxylase (responsible for the conversion of 25-hydroxycholecalciferol into 1,25 dihydroxyvitamin D). Later, this progresses to secondary hyperparathyroidism, renal osteodystrophy, and vascular calcification that further impairs cardiac function. An extreme consequence is the occurrence of the rare condition named calciphylaxis.
- The concept of chronic kidney disease-mineral bone disorder (CKD-MBD) currently describes a broader clinical syndrome that develops as a systemic disorder of mineral and bone metabolism due to CKD manifested by either "one or a combination" of: 1) abnormalities of calcium, phosphorus (phosphate), parathyroid hormone, or vitamin D metabolism; 2) abnormalities in bone turnover, mineralization, volume, linear growth, or strength (renal osteodystrophy); and 3) vascular or other soft-tissue calcification. CKD-MBD has been associated to poor hard outcomes.
- Metabolic acidosis (due to accumulation of sulfates, phosphates, uric acid etc.) may cause altered enzyme activity by excess acid acting on enzymes; and also increased excitability of cardiac and neuronal membranes by the promotion of hyperkalemia due to excess acid (acidemia). Acidosis is also due to decreased capacity to generate enough ammonia from the cells of the proximal tubule.
- Iron deficiency anemia, which increases in prevalence as kidney function decreases, is especially prevalent in those requiring haemodialysis. It is multifactoral in cause, but includes increased inflammation, reduction in erythropoietin, and hyperuricemia leading to bone marrow suppression.
People with CKD suffer from accelerated atherosclerosis and are more likely to develop cardiovascular disease than the general population. Patients afflicted with CKD and cardiovascular disease tend to have significantly worse prognoses than those suffering only from the latter.
Sexual dysfunction is very common in both men and women with CKD. A majority of men have a reduced sex drive, difficulty obtaining an erection, and reaching orgasm, and the problems get worse with age. A majority of women have trouble with sexual arousal, and painful menstruation and problems with performing and enjoying sex are common.
Acute kidney injury is diagnosed on the basis of clinical history and laboratory data. A diagnosis is made when there is a rapid reduction in kidney function, as measured by serum creatinine, or based on a rapid reduction in urine output, termed oliguria (less than 400 mLs of urine per 24 hours).
AKI can be caused by systemic disease (such as a manifestation of an autoimmune disease, e.g. lupus nephritis), crush injury, contrast agents, some antibiotics, and more. AKI often occurs due to multiple processes. The most common cause is dehydration and sepsis combined with nephrotoxic drugs, especially following surgery or contrast agents.
The causes of acute kidney injury are commonly categorized into "prerenal", "intrinsic", and "postrenal".
Dent's disease (or Dent disease) is a rare X-linked recessive inherited condition that affects the proximal renal tubules of the kidney. It is one cause of Fanconi syndrome, and is characterized by tubular proteinuria, excess calcium in the urine, formation of calcium kidney stones, nephrocalcinosis, and chronic kidney failure.
"Dent's disease" is often used to describe an entire group of familial disorders, including X-linked recessive nephrolithiasis with kidney failure, X-linked recessive hypophosphatemic rickets, and both Japanese and idiopathic low-molecular-weight proteinuria. About 60% of patients have mutations in the "CLCN5" gene (Dent 1), which encodes a kidney-specific chloride/proton antiporter, and 15% of patients have mutations in the "OCRL1" gene (Dent 2).
Primary hyperoxaluria is a rare condition (autosomal recessive), resulting in increased excretion of oxalate (up to 600mg a day from normal 50mg a day), with oxalate stones being common.
Blockage of urine flow in an area below the kidneys results in postrenal azotemia. It can be caused by congenital abnormalities such as vesicoureteral reflux, blockage of the ureters by kidney stones, pregnancy, compression of the ureters by cancer, prostatic hyperplasia, or blockage of the urethra by kidney or bladder stones. Like in prerenal azotemia, there is no inherent renal disease. The increased resistance to urine flow can cause back up into the kidneys, leading to hydronephrosis.
The BUN:Cr in postrenal azotemia is initially >15. The increased nephron tubular pressure (due to fluid back-up) causes increased reabsorption of urea, elevating it abnormally relative to creatinine. Persistent obstruction damages the tubular epithelium over time, and renal azotemia will result with a decreased BUN:Cr ratio.
Renal papillary necrosis is a form of nephropathy involving the necrosis of the renal papilla. Lesions that characterize renal papillary necrosis come from an impairment of the blood supply and from subsequent ischemic necrosis that is diffuse.
An overview of types 1, 2, and 4 is presented below (type 3 is usually excluded from modern classifications):