Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Among some of the symptoms consistent with pulmonary valve stenosis are the following:
- Heart murmur
- Cyanosis
- Dyspnea
- Dizziness
- Upper thorax pain
- Developmental disorders
In regards to the cause of pulmonary valve stenosis a very high percentage are congenital, the right ventricular flow is hindered (or obstructed by this). The cause in turn is divided into: valvular, external and intrinsic (when it is acquired).
Because pulmonic regurgitation is the result of other factors in the body, any noticeable symptoms are ultimately caused by an underlying medical condition rather than the regurgitation itself. However, more severe regurgitation may contribute to right ventricular enlargement by dilation, and in later stages, right heart failure. A diastolic decrescendo murmur can sometimes be identified,( heard best) over the left lower sternal border.
Pulmonary insufficiency (or incompetence, or regurgitation) is a condition in which the pulmonary valve is incompetent and allows backflow from the pulmonary artery to the right ventricle of the heart during diastole. While a small amount of backflow may occur ordinarily, it is usually only shown on an echocardiogram and is harmless. More pronounced regurgitation that is noticed through a routine physical examination is a medical sign of disease and warrants further investigation. If it is secondary to pulmonary hypertension it is referred to as a Graham Steell murmur.
Symptoms related to aortic stenosis depend on the degree of stenosis. Most people with mild to moderate aortic stenosis do not have symptoms. Symptoms usually present in individuals with severe aortic stenosis, though they may occur in those with mild to moderate aortic stenosis as well. The three main symptoms of aortic stenosis are loss of consciousness, anginal chest pain and shortness of breath with activity or other symptoms of heart failure such as shortness of breath while lying flat, episodes of shortness of breath at night, or swollen legs and feet. It may also be accompanied by the characteristic "Dresden china" appearance of pallor with a light flush.
Signs and symptoms of mitral stenosis include the following:
- Heart failure symptoms, such as dyspnea on exertion, orthopnea and paroxysmal nocturnal dyspnea (PND)
- Palpitations
- Chest pain
- Hemoptysis
- Thromboembolism in later stages when the left atrial volume is increased (i.e., dilation). The latter leads to increase risk of atrial fibrillation, which increases the risk of blood stasis (motionless). This increases the risk of coagulation.
- Ascites and edema and hepatomegaly (if right-side heart failure develops)
Fatigue and weakness increase with exercise and pregnancy.
A mild diastolic murmur can be heard during auscultation caused by the blood flow through the stenotic valve. It is best heard over the left sternal border with rumbling character and tricuspid opening snap with wide-splitting S1. It may increase in intensity with inspiration (Carvallo's sign). The diagnosis will typically be confirmed by an echocardiograph, which will also allow the physician to assess its severity.
Pulmonic stenosis, also known as pulmonary stenosis, is a dynamic or fixed obstruction of flow from the right ventricle of the heart to the pulmonary artery. It is usually first diagnosed in childhood.
Pulmonic stenosis is usually due to isolated valvular obstruction (pulmonary valve stenosis), but it may be due to subvalvular or supravalvular obstruction, such as infundibular stenosis. It may occur in association with other congenital heart defects as part of more complicated syndromes (for example, tetralogy of Fallot).
Pulmonary atresia is a congenital malformation of the pulmonary valve in which the valve orifice fails to develop. The valve is completely closed thereby obstructing the outflow of blood from the heart to the lungs. The pulmonary valve is located on the right side of the heart between the right ventricle and pulmonary artery. In a normal functioning heart, the opening to the pulmonary valve has three flaps that open and close
In congenital heart defects such as pulmonary atresia, one finds that these structural abnormalities can include the valves of the heart, as well as, the walls and arteries/veins near the heart muscle. Consequently, blood flow due to the aforementioned structural abnormalities, is affected, either by blocking or altering the flow of blood through the human cardiac muscle.
Pulmonary and tricuspid valve diseases are right heart diseases. Pulmonary valve diseases are the least common heart valve disease in adults.
Pulmonary valve stenosis is often the result of congenital malformations and is observed in isolation or as part of a larger pathologic process, as in Tetralogy of Fallot, Noonan syndrome, and congenital rubella syndrome . Unless the degree of stenosis is severe individuals with pulmonary stenosis usually have excellent outcomes and treatment options. Often patients do not require intervention until later in adulthood as a consequence of calcification that occurs with aging.
Pulmonary valve insufficiency occurs commonly in healthy individuals to a very mild extent and does not require intervention. More appreciable insufficiency it is typically the result of damage to the valve due to cardiac catheterization, aortic balloon pump insertion, or other surgical manipulations. Additionally, insufficiency may be the result of carcinoid syndrome, inflammatory processes such a rheumatoid disease or endocarditis, or congenital malformations. It may also be secondary to severe pulmonary hypertension.
Tricuspid valve stenosis without co-occurrent regurgitation is highly uncommon and typically the result of rheumatic disease. It may also be the result of congenital abnormalities, carcinoid syndrome, obstructive right atrial tumors (typically lipomas or myxomas), or hypereosinophilic syndromes.
Minor tricuspid insufficiency is common in healthy individuals. In more severe cases it is a consequence of dilation of the right ventricle, leading to displacement of the papillary muscles which control the valve's ability to close. Dilation of the right ventricle occurs secondary to ventricular septal defects, right to left shunting of blood, eisenmenger syndrome, hyperthyroidism, and pulmonary stenosis. Tricuspid insufficiency may also be the result of congenital defects of the tricuspid valve, such as Ebstein's anomaly.
Symptoms of aortic insufficiency are similar to those of heart failure and include the following:
- Dyspnea on exertion
- Orthopnea
- Paroxysmal nocturnal dyspnea
- Palpitations
- Angina pectoris
- Cyanosis (in acute cases)
Angina in setting of heart failure also increases the risk of death. In people with angina, the 5-year mortality rate is 50% if the aortic valve is not replaced.
Angina in the setting of AS occurs due to left ventricular hypertrophy (LVH) that is caused by the constant production of increased pressure required to overcome the pressure gradient caused by the AS. While the muscular layer of the left ventricle thickens, the arteries that supply the muscle do not get significantly longer or bigger, so the muscle may not receive enough blood supply to meet its oxygen requirement. This ischemia may first be evident during exercise when the heart muscle requires increased blood supply to compensate for the increased workload. The individual may complain of anginal chest pain with exertion. At this stage, a cardiac stress test with imaging may be suggestive of ischemia.
Eventually, however, the heart muscle will require more blood supply at rest than can be supplied by the coronary artery branches. At this point there may be signs of "ventricular strain pattern" (ST segment depression and T wave inversion) on the EKG, suggesting subendocardial ischemia. The subendocardium is the region that is most susceptible to ischemia because it is the most distant from the epicardial coronary arteries.
Signs/symptoms of tricuspid insufficiency are generally those of right-sided heart failure, such as ascites and peripheral edema.
Tricuspid insufficiency may lead to the presence of a pansystolic heart murmur. Such a murmur is usually of low frequency and best heard low on the lower left sternal border. As with most right-sided phenomena, it tends to increase with inspiration, and decrease with expiration. This is known as Carvallo's sign. However, the murmur may be inaudible indicating the relatively low pressures in the right side of the heart. A third heart sound may also be present, also heard with inspiration at the lower sternal border.
In addition to the possible ausculatory findings above, there are other signs indicating the presence of tricuspid regurgitation. There may be giant C-V waves in the jugular pulse and a palpably (and sometimes visibly) pulsatile liver on abdominal exam. Since the murmur of tricupsid regurgitation may be faint or inaudible, these signs can be helpful in establishing the diagnosis.
A right ventricular outflow tract obstruction (RVOTO) may be due to a defect in the pulmonic valve, the supravalvar region, the infundibulum, or the pulmonary artery.
- Pulmonary atresia
- Pulmonary valve stenosis
- Hypoplastic right heart syndrome
- Tetralogy of Fallot
When pulmonic stenosis (PS) is present, resistance to blood flow causes right ventricular hypertrophy. If right ventricular failure develops, right atrial pressure will increase, and this may result in a persistent opening of the foramen ovale, shunting of unoxygenated blood from the right atrium into the left atrium, and systemic cyanosis. If pulmonary stenosis is severe, congestive heart failure occurs, and systemic venous engorgement will be noted. An associated defect such as a patent ductus arteriosus partially compensates for the obstruction by shunting blood from the left ventricle to the aorta then back to the pulmonary artery (as a result of the higher pressure in the left ventricle) and back into the lungs.
The symptoms associated with MI are dependent on which phase of the disease process the individual is in. Individuals with acute MI are typically severely symptomatic and will have the signs and symptoms of acute decompensated congestive heart failure (i.e. shortness of breath, pulmonary edema, orthopnea, and paroxysmal nocturnal dyspnea), as well as symptoms of cardiogenic shock (i.e., shortness of breath at rest). Cardiovascular collapse with shock (cardiogenic shock) may be seen in individuals with acute MI due to papillary muscle rupture, rupture of a chorda tendinea or infective endocarditis of the mitral valve.
Individuals with chronic compensated MI may be asymptomatic for long periods of time, with a normal exercise tolerance and no evidence of heart failure. Over time, however, there may be decompensation and patients can develop volume overload (congestive heart failure). Symptoms of entry into a decompensated phase may include fatigue, shortness of breath particularly on exertion, and leg swelling. Also there may be development of an irregular heart rhythm known as atrial fibrillation.
Findings on clinical examination depend on the severity and duration of MI. The mitral component of the first heart sound is usually soft and with a laterally displaced apex beat, often with heave. The first heart sound is followed by a high-pitched holosystolic murmur at the apex, radiating to the back or clavicular area. Its duration is, as the name suggests, the whole of systole. The loudness of the murmur does not correlate well with the severity of regurgitation. It may be followed by a loud, palpable P, heard best when lying on the left side. A third heart sound is commonly heard.
In acute cases, the murmur and tachycardia may be the only distinctive signs.
Patients with mitral valve prolapse may have a holosystolic murmur or often a mid-to-late systolic click and a late systolic murmur. Cases with a late systolic regurgitant murmur may still be associated with significant hemodynamic consequences.
Tricuspid Valve Stenosis is a valvular heart disease that narrows the opening of the heart's tricuspid valve. It is a relatively rare condition that causes stenosis-increased restriction of blood flow through the valve.
A ventricular outflow tract obstruction is one type of congenital heart defect in which either the right or left ventricular outflow tract is blocked or obstructed. These obstructions represent a spectrum of disorders.
At birth, the ductus arteriosus is still open, and there is higher than normal resistance to blood flow in the lungs. This allows for adequate oxygenation via mixing between the atria and a normal appearance at birth. When the ductus begins to close and pulmonary vascular resistance decreases, blood flow through the ductus is restricted and flow to the lungs is increased, reducing oxygen delivery to the systemic circulation. This results in cyanosis and respiratory distress which can progress to cardiogenic shock. The first symptoms are cyanosis that does not respond to oxygen administration or poor feeding. Peripheral pulses may be weak and extremities cool to the touch.
HLHS often co-occurs with low birth weight and premature birth.
In neonates with a small atrial septal defect, termed "restrictive", there is inadequate mixing of oxygenated and deoxygenated blood. These neonates quickly decompensate and develop acidosis and cyanosis.
On EKG, right axis deviation and right ventricular hypertrophy are common, but not indicative of HLHS. Chest x-ray may show a large heart (cardiomegaly) or increased pulmonary vasculature. Neonates with HLHS do not typically have a heart murmur, but in some cases, a pulmonary flow murmur or tricuspid regurgitation murmur may be audible.
Co-occurring tricuspid regurgitation or right ventricular dysfunction can cause hepatomegaly to develop.
The symptoms/signs of pulmonary atresia that will occur in babies are consistent with cyanosis, some fatigue and some shortness of breath (eating may be a problem as well).
In the case of pulmonary atresia with ventricular septal defect, one finds that decreased pulmonary blood flow may cause associated defects such as:
- Tricuspid atresia
- Tetralogy of Fallot (severe)
- RV w/ double-outlet
Mitral stenosis is a valvular heart disease characterized by the narrowing of the orifice of the mitral valve of the heart.
Valvular heart disease is any disease process involving one or more of the four valves of the heart (the aortic and mitral valves on the left and the pulmonary and tricuspid valves on the right). These conditions occur largely as a consequence of aging, but may also be the result of congenital (inborn) abnormalities or specific disease or physiologic processes including rheumatic heart disease and pregnancy.
Anatomically, the valves are part of the dense connective tissue of the heart known as the cardiac skeleton and are responsible for the regulation of blood flow through the heart and great vessels. Valve failure or dysfunction can result in diminished heart functionality, though the particular consequences are dependent on the type and severity of valvular disease. Treatment of damaged valves may involve medication alone, but often involves surgical valve repair (valvuloplasty) or replacement (insertion of an artificial heart valve).
Heart valve dysplasia is a congenital heart defect which affects the aortic, pulmonary, mitral, and tricuspid heart valves. Dysplasia of the mitral and tricuspid valves can cause leakage of blood or stenosis.
Dysplasia of the mitral and tricuspid valves - also known as the atrioventricular (AV) valves - can appear as thickened, shortened, or notched valves. The chordae tendinae can be fused or thickened. The papillary muscles can be enlarged or atrophied. The cause is unknown, but genetics play a large role. Dogs and cats with tricuspid valve dysplasia often also have an open foramen ovale, an atrial septal defect, or inflammation of the right atrial epicardium. In dogs, tricuspid valve dysplasia can be similar to Ebstein's anomaly in humans.
Mitral valve stenosis is one of the most common congenital heart defects in cats. In dogs, it is most commonly found in Great Danes, German Shepherd Dogs, Bull Terriers, Golden Retrievers, Newfoundlands, and Mastiffs. Tricuspid valve dysplasia is most common in the Old English Sheepdog, German Shepherd Dog, Weimaraner, Labrador Retriever, Great Pyrenees, and sometimes the Papillon. It is inherited in the Labrador Retriever.
The disease and symptoms are similar to progression of acquired valve disease in older dogs. Valve leakage leads to heart enlargement, arrhythmias, and congestive heart failure. Heart valve dysplasia can be tolerated for years or progress to heart failure in the first year of life. Diagnosis is with an echocardiogram. The prognosis is poor with significant heart enlargement.
Historically, the term mitral valve prolapse syndrome has been applied to MVP associated with palpitations, atypical chest pain, dyspnea on exertion, low body mass index, and electrocardiogram abnormalities in the setting of anxiety, syncope, low blood pressure, and other signs suggestive of autonomic nervous system dysfunction.
Occasionally, supraventricular arrhythmias observed in MVP are associated with increased parasympathetic tone.
Most individuals with a significant ASD are diagnosed "in utero" or in early childhood with the use of ultrasonography or auscultation of the heart sounds during physical examination.
Some individuals with an ASD have surgical correction of their ASD during childhood. The development of signs and symptoms due to an ASD are related to the size of the intracardiac shunt. Individuals with a larger shunt tend to present with symptoms at a younger age.
Adults with an uncorrected ASD present with symptoms of dyspnea on exertion (shortness of breath with minimal exercise), congestive heart failure, or cerebrovascular accident (stroke). They may be noted on routine testing to have an abnormal chest X-ray or an abnormal ECG and may have atrial fibrillation. If the ASD causes a left-to-right shunt, the pulmonary vasculature in both lungs may appear dilated on chest X-ray, due to the increase in pulmonary blood flow.