Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Neurological disorders can be categorized according to the primary location affected, the primary type of dysfunction involved, or the primary type of cause. The broadest division is between central nervous system disorders and peripheral nervous system disorders. The Merck Manual lists brain, spinal cord and nerve disorders in the following overlapping categories:
- Brain:
- Brain damage according to cerebral lobe "(see also 'lower' brain areas such as basal ganglia, cerebellum, brainstem)":
- Frontal lobe damage
- Parietal lobe damage
- Temporal lobe damage
- Occipital lobe damage
- Brain dysfunction according to type:
- Aphasia (language)
- Dysgraphia (writing)
- Dysarthria (speech)
- Apraxia (patterns or sequences of movements)
- Agnosia (identifying things or people)
- Amnesia (memory)
- Spinal cord disorders (see spinal pathology, injury, inflammation)
- Peripheral neuropathy and other Peripheral nervous system disorders
- Cranial nerve disorder such as Trigeminal neuralgia
- Autonomic nervous system disorders such as dysautonomia, Multiple System Atrophy
- Seizure disorders such as epilepsy
- Movement disorders of the central and peripheral nervous system such as Parkinson's disease, Essential tremor, Amyotrophic lateral sclerosis, Tourette's Syndrome, Multiple Sclerosis and various types of Peripheral Neuropathy
- Sleep disorders such as Narcolepsy
- Migraines and other types of Headache such as Cluster Headache and Tension Headache
- Lower back and neck pain (see Back pain)
- Central neuropathy (see Neuropathic pain)
- Neuropsychiatric illnesses (diseases and/or disorders with psychiatric features associated with known nervous system injury, underdevelopment, biochemical, anatomical, or electrical malfunction, and/or disease pathology e.g. Attention deficit hyperactivity disorder, Autism, Tourette's syndrome and some cases of obsessive compulsive disorder as well as the neurobehavioral associated symptoms of degeneratives of the nervous system such as Parkinson's disease, essential tremor, Huntington's disease, Alzheimer's disease, multiple sclerosis and organic psychosis.)
Many of the diseases and disorders listed above have neurosurgical treatments available (e.g. Tourette's Syndrome, Parkinson's disease, Essential tremor and Obsessive compulsive disorder).
- Delirium and dementia such as Alzheimer's disease
- Dizziness and vertigo
- Stupor and coma
- Head injury
- Stroke (CVA, cerebrovascular attack)
- Tumors of the nervous system (e.g. cancer)
- Multiple sclerosis and other demyelinating diseases
- Infections of the brain or spinal cord (including meningitis)
- Prion diseases (a type of infectious agent)
- Complex regional pain syndrome (a chronic pain condition)
Neurological disorders in non-human animals are treated by veterinarians.
Major depressive disorder, otherwise known as depression, is a disorder that is characterized by a pervasive and persistent low mood that is accompanied by low self-esteem and by a loss of interest or pleasure in normally enjoyable activities.
Catalepsy is a nervous disorder characterized by immobility and muscular rigidity, along with a decreased sensitivity to pain. Catalepsy is considered a symptom of serious diseases of the nervous system (e.g., Parkinson's disease, Epilepsy, etc.) rather than a disease by itself. Cataleptic fits can range in duration from several minutes to weeks. Catalepsy often responds to Benzodiazepines (e.g., Lorazepam) in pill & I.V. form.
A neurological disorder is any disorder of the nervous system. Structural, biochemical or electrical abnormalities in the brain, spinal cord or other nerves can result in a range of symptoms. Examples of symptoms include paralysis, muscle weakness, poor coordination, loss of sensation, seizures, confusion, pain and altered levels of consciousness. There are many recognized neurological disorders, some relatively common, but many rare. They may be assessed by neurological examination, and studied and treated within the specialities of neurology and clinical neuropsychology.
Interventions for neurological disorders include preventative measures, lifestyle changes, physiotherapy or other therapy, neurorehabilitation, pain management, medication, or operations performed by neurosurgeons. The World Health Organization estimated in 2006 that neurological disorders and their sequelae (direct consequences) affect as many as one billion people worldwide, and identified health inequalities and social stigma/discrimination as major factors contributing to the associated disability and suffering.
The most common first sign of MSA is the appearance of an "akinetic-rigid syndrome" (i.e. slowness of initiation of movement resembling Parkinson's disease) found in 62% at first presentation. Other common signs at onset include problems with balance (cerebellar ataxia) found in 22% at first presentation, followed by genito-urinary problems (9%). For men, the first sign can be erectile dysfunction (inability to achieve or sustain an erection). Women have also reported reduced genital sensitivity. Both men and women often experience problems with their bladders including urgency, frequency, incomplete bladder emptying, or an inability to pass urine (retention). About 1 in 5 MSA patients will fall in their first year of disease.
As the disease progresses one of three groups of symptoms predominate.
These are:
1. Parkinsonism (slow, stiff movement, writing becomes small and spidery)
2. Cerebellar dysfunction (difficulty coordinating movement and balance)
3. Autonomic nervous system dysfunction (impaired automatic body functions) including:
Other symptoms such as double vision can occur.
Not all patients experience all of these symptoms.
Some patients (20% in one study) experience significant cognitive impairment as a result of MSA.
Motor disorders are malfunctions of the nervous system that cause involuntary or uncontrollable movements or actions of the body (Stone). These disorders can cause lack of intended movement or an excess of involuntary movement (Mandal). Symptoms of motor disorders include tremors, jerks, twitches, spasms, contractions, or gait problems.
In order to diagnose Bickerstaff brainstem encephalitis, ataxia and ophthalmoplegia must be present. These are also diagnostic features of Miller Fisher syndrome, and so Bickerstaff's is only diagnosed if other features are present which exclude Miller Fisher syndrome. These may include drowsiness, coma or hyperreflexia. When the condition is defined in this way, a number of other features are commonly but not always found: among these are weakness of the limbs, the face, and/or the bulbar muscles; abnormalities of the pupils; and absent reflexes.
Like some other autoimmune diseases, the condition usually follows a minor infection, such as a respiratory tract infection or gastroenteritis.
Functional weakness is weakness of an arm or leg due to the nervous system not working properly. It is not caused by damage or disease of the nervous system. Patients with functional weakness experience symptoms of limb weakness which can be disabling and frightening such as problems walking or a ‘heaviness’ down one side, dropping things or a feeling that a limb just doesn’t feel normal or ‘part of them’. Functional weakness may also be described as functional neurological symptom disorder (FNsD), Functional Neurological Disorder (FND) or functional neurological symptoms. If the symptoms are caused by a psychological trigger, it may be diagnosed as 'dissociative motor disorder' or conversion disorder (CD).
To the patient and the doctor it often looks as if there has been a stroke or have symptoms of multiple sclerosis. However, unlike these conditions, with functional weakness there is no permanent damage to the nervous system which means that it can get better or even go away completely.
The diagnosis should usually be made by a consultant neurologist so that other neurological causes can be excluded. The diagnosis should be made on the basis of positive features in the history and the examination (such as Hoover's sign). It is dangerous to make the diagnosis simply because tests are normal. Neurologists usually diagnose wrongly about 5% of the time (which is the same for many other conditions.)
Many patients with functional weakness suffer from not being believed. Although psychological factors can be important for a some patients, for the majority of individuals the cause of their weakness has a physical trigger such as a virus, injury or other medical condition. The symptoms of functional weakness are real, and are as disabling and distressing as Multiple Sclerosis or Parkinson's.
The most effective treatment is physiotherapy, however it is also helpful for patients to understand the diagnosis, and some may find CBT helps them to cope with the emotions associated with being unwell. For those with conversion disorder, psychological therapy is key to their treatment as it is emotional or psychological factors which are causing their symptoms.
Motor disorders are disorders of the nervous system that cause abnormal and involuntary movements. They can result from damage to the motor system.
Motor disorders are defined in the fifth edition of the "Diagnostic and Statistical Manual of Mental Disorders" (DSM-5) – published in 2013 to replace the fourth text revision (DSM-IV-TR) – as a new sub-category of neurodevelopmental disorders. The DSM-5 motor disorders include developmental coordination disorder, stereotypic movement disorder, and the tic disorders including Tourette syndrome.
Neuromuscular disease is a very broad term that encompasses many diseases and ailments that impair the functioning of the muscles, either directly, being pathologies of the voluntary muscle, or indirectly, being pathologies of nerves or neuromuscular junctions.
Neuromuscular diseases are those that affect the muscles and/or their direct nervous system control, problems with central nervous control can cause either spasticity or some degree of paralysis (from both lower and upper motor neuron disorders), depending on the location and the nature of the problem. Some examples of central disorders include cerebrovascular accident, Parkinson's disease, multiple sclerosis, Huntington's disease and Creutzfeldt–Jakob disease. Spinal muscular atrophies are disorders of lower motor neuron while amyotrophic lateral sclerosis is a mixed upper and lower motor neuron condition.
Neuromuscular disease can be caused by autoimmune disorders, genetic/hereditary disorders and some forms of the collagen disorder Ehlers–Danlos Syndrome, exposure to environmental chemicals and poisoning which includes heavy metal poisoning. The failure of the electrical insulation surrounding nerves, the myelin, is seen in certain deficiency diseases, such as the failure of the body's system for absorbing vitamin B-12
Diseases of the motor end plate include myasthenia gravis, a form of muscle weakness due to antibodies against acetylcholine receptor, and its related condition Lambert-Eaton myasthenic syndrome (LEMS). Tetanus and botulism are bacterial infections in which bacterial toxins cause increased or decreased muscle tone, respectively.Muscular dystrophies, including Duchenne's and Becker's, are a large group of diseases, many of them hereditary or resulting from genetic mutations, where the muscle integrity is disrupted, they lead to progressive loss of strength and decreased life span.
Further causes of neuromuscular diseases are :
Inflammatory muscle disorders
- Polymyalgia rheumatica (or "muscle rheumatism") is an inflammatory condition that mainly occurs in the elderly; it is associated with giant-cell arteritis(It often responds to prednisolone).
- Polymyositis is an autoimmune condition in which the muscle is affected.
- Rhabdomyolysis is the breakdown of muscular tissue due to any cause.
Tumors
- Smooth muscle: leiomyoma (benign)
- Striated muscle: rhabdomyoma (benign)
Most symptoms of people with post-viral cerebellar ataxia deal to a large extent with the movement of the body. Some common symptoms that are seen are clumsy body movements and eye movements, difficulty walking, nausea, vomiting, and headaches.
Primary autonomic failure (also called primary dysautonomia) refers to a category of dysautonomias -- conditions in which the autonomic nervous system does not function properly.
In primary dysautonomias, the autonomic dysfunction occurs as a primary condition (as opposed to resulting from another disease). Autonomic failure is categorized as "primary" when believed to result from a chronic condition characterized by degeneration of the autonomic nervous system, or where autonomic failure is the predominant symptom and its cause is unknown.
Such "primary" dysautonomias are distinguished from secondary dysautonomias, where the dysfunction of the autonomic nervous system is believed to be caused by another disease (e.g. diabetes).
Diseases categorized as primary autonomic failure usually include pure autonomic failure and multiple system atrophy. Many scientists also categorize Parkinson disease and familial dysautonomia as "primary".
Differential diagnosis may include:
- Opsoclonus-myoclonus-ataxia syndrome
- Miller-Fisher syndrome
- Meningoencephalitis
- Cerebral abscess
- Tumor
- Hydrocephalus
- Inner-ear Disease
- Acute Vestibulitis
- Acute Labyrinthitis
Giant axonal neuropathy usually appears in infancy or early childhood, and is progressive. Early signs of the disorder often present in the peripheral nervous system, causing individuals with this disorder to have problems walking. Later, normal sensation, coordination, strength, and reflexes become affected. Hearing or vision problems may also occur. Abnormally kinky hair is characteristic of giant axonal neuropathy, appearing in almost all cases. As the disorder progresses, central nervous system becomes involved, which may cause a gradual decline in mental function, loss of control of body movement, and seizures.
Anti-GQ1b antibodies are found in two-thirds of patients with this condition. This antibody is also found in almost all cases of Miller Fisher syndrome. The EEG is often abnormal, but shows only slow wave activity, which also occurs in many other conditions, and so is of limited value in diagnosis. Similarly, raised CSF protein levels and pleocytosis are frequent but non-specific. It was originally thought that raised CSF protein without pleocytosis ('albuminocytological dissociation') was a characteristic feature, as it is in Guillain–Barré syndrome, but this has not been supported in more recent work. In only 30% of cases is a MRI brain scan abnormal. Nerve conduction studies may show an axonal polyneuropathy.
The American College of Rheumatology has outlined 19 syndromes that are seen in NPSLE. These syndromes encompass disorders of the central and peripheral nervous systems:
- Aseptic meningitis
- Cerebrovascular disease
- Demyelinating syndrome
- Headache
- Movement disorder
- Myelopathy
- Seizure disorders
- Acute confusional state
- Anxiety disorder
- Cognitive dysfunction
- Mood disorder
- Psychosis
- Acute inflammatory demyelinating polyradiculoneuropathy
- Autonomic disorder
- Mononeuropathy (single/multiplex)
- Myasthenia gravis
- Cranial neuropathy
- Plexopathy
- Polyneuropathy
Each of the 19 syndromes are also stand-alone diagnoses, which can occur with or without lupus.
The majority of cases involve the central nervous system (CNS), which consists of the brain and spinal cord. The CNS syndromes can be subcategorized as either focal or diffuse. The focal syndromes are neurological, while the diffuse syndromes are psychiatric in nature. The most common CNS syndromes are headache and mood disorder.
Though neuropsychiatric lupus is sometimes referred to as "CNS lupus", it can also affect the peripheral nervous system (PNS). Between 10-15% of people with NPSLE have PNS involvement. Mononeuropathy and polyneuropathy are the most common PNS syndromes.
The signs and symptoms of autonomic neuropathy include the following:
- Urinary bladder conditions: bladder incontinence or urinary retention
- Gastrointestinal tract: dysphagia, abdominal pain, nausea, vomiting, malabsorption, fecal incontinence, gastroparesis, diarrhoea, constipation
- Cardiovascular system: disturbances of heart rate (tachycardia, bradycardia), orthostatic hypotension, inadequate increase of heart rate on exertion
- Respiratory system: impairments in the signals associated with regulation of breathing and gas exchange (central sleep apnea, hypopnea, bradypnea).
- Nervous system: pupillary defect, exaggerated hippus, dizziness or lightheadedness.
- Other areas: hypoglycemia unawareness, genital impotence, sweat disturbances, sicca (dryness).
The most distinctive clinical feature is the absence of overflow tears with emotional crying after age 7 months. This symptom can manifest less dramatically as persistent bilateral eye irritation. There is also a high prevalence of breech presentation. Other symptoms include weak or absent suck and poor tone, poor suck and misdirected swallowing, and red blotching of skin.
Symptoms in an older child with familial dysautonomia might include:
1. Delayed speech and walking
2. Unsteady gait
3. Spinal curvature
4. Corneal abrasion
5. Less perception in pain or temperature with nervous system.
6. Poor growth
7. Erratic or unstable blood pressure.
8. Red puffy hands
9. Dysautonomia crisis: a constellation of symptoms in response to physical and emotional stress; usually accompanied by vomiting, increased heart rate, increase in blood pressure, sweating, drooling, blotching of the skin and a negative change in personality.
Giant axonal neuropathy is a rare, autosomal recessive neurological disorder that causes disorganization of neurofilaments. Neurofilaments form a structural framework that helps to define the shape and size of neurons and are essential for normal nerve function.
Familial dysautonomia (FD), sometimes called Riley–Day syndrome and hereditary sensory and autonomic neuropathy type III (HSAN-III), is a disorder of the autonomic nervous system which affects the development and survival of sensory, sympathetic and some parasympathetic neurons in the autonomic and sensory nervous system resulting in variable symptoms, including insensitivity to pain, inability to produce tears, poor growth, and labile blood pressure (episodic hypertension and postural hypotension). People with FD have frequent vomiting crises, pneumonia, problems with speech and movement, difficulty swallowing, inappropriate perception of heat, pain, and taste, as well as unstable blood pressure and gastrointestinal dysmotility. FD does not affect intelligence. Originally reported by Drs. Conrad Milton Riley (1913–2005) and Richard Lawrence Day (1905–1989) in 1949, FD is one example of a group of disorders known as hereditary sensory and autonomic neuropathies (HSAN). All HSAN are characterized by widespread sensory dysfunction and variable autonomic dysfunction caused by incomplete development of sensory and autonomic neurons. The disorders are believed to be genetically distinct from each other.
Giveway weakness (also "give-away weakness", "collapsing weakness", etc.) refers to a symptom where a patient's arm, leg, can initially provide resistance against an examiner's touch, but then suddenly "gives way" and provides no further muscular resistance.
Dysarthrias are classified in multiple ways based on the presentation of symptoms. Specific dysarthrias include spastic (resulting from bilateral damage to the upper motor neuron), flaccid (resulting from bilateral or unilateral damage to the lower motor neuron), ataxic (resulting from damage to cerebellum), unilateral upper motor neuron (presenting milder symptoms than bilateral UMN damage), hyperkinetic and hypokinetic (resulting from damage to parts of the basal ganglia, such as in Huntington's disease or Parkinsonism), and the mixed dysarthrias (where symptoms of more than one type of dysarthria are present). The majority of dysarthric patients are diagnosed as having 'mixed' dysarthria, as neural damage resulting in dysarthria is rarely contained to one part of the nervous system — for example, multiple strokes, traumatic brain injury, and some kinds of degenerative illnesses (such as amyotrophic lateral sclerosis) usually damage many different sectors of the nervous system.
Ataxic dysarthria is an acquired neurological and sensorimotor speech deficit. It is a common diagnosis among the clinical spectrum of ataxic disorders. Since regulation of skilled movements is a primary function of the cerebellum, damage to the superior cerebellum and the superior cerebellar peduncle is believed to produce this form of dysarthria in ataxic patients. Growing evidence supports the likelihood of cerebellar involvement specifically affecting speech motor programming and execution pathways, producing the characteristic features associated with ataxic dysarthria. This link to speech motor control can explain the abnormalities in articulation and prosody, which are hallmarks of this disorder. Some of the most consistent abnormalities observed in patients with ataxia dysarthria are alterations of the normal timing pattern, with prolongation of certain segments and a tendency to equalize the duration of syllables when speaking. As the severity of the dysarthria increases, the patient may also lengthen more segments as well as increase the degree of lengthening of each individual segment.
Common clinical features of ataxic dysarthria include abnormalities in speech modulation, rate of speech, explosive or scanning speech, slurred speech, irregular stress patterns, and vocalic and consonantal misarticulations.
Ataxic dysarthria is associated with damage to the left cerebellar hemisphere in right-handed patients.
Dysarthria may affect a single system; however, it is more commonly reflected in multiple motor-speech systems. The etiology, degree of neuropathy, existence of co-morbidities, and the individual's response all play a role in the effect the disorder has on the individual's quality of life. Severity ranges from occasional articulation difficulties to verbal speech that is completely unintelligible.
Individuals with dysarthria may experience challenges in the following:
- Timing
- Vocal quality
- Pitch
- Volume
- Breath control
- Speed
- Strength
- Steadiness
- Range
- Tone
Examples of specific observations include a continuous breathy voice, irregular breakdown of articulation, monopitch, distorted vowels, word flow without pauses, and hypernasality.
A degenerative disease of the autonomic nervous system, symptoms include dizziness and fainting (caused by orthostatic hypotension), visual disturbances and neck pain. Chest pain, fatigue and sexual dysfunction are less common symptoms that may also occur. Symptoms are worse when standing; sometimes one may relieve symptoms by lying down.