Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hereditary Neuropathy with Liability to Pressure Palsy (HNPP) is a peripheral neuropathy, a disorder of the nerves. HNPP is a nerve disorder that affects the peripheral nerves,—pressure on the nerves can cause tingling sensations, numbness, pain, weakness, muscle atrophy, and even paralyzation of affected area. In normal individuals these symptoms disappear quickly but in sufferers of HNPP even a short period of pressure can cause the symptoms to occur. Palsies can last from minutes, days to weeks, or even months.
The symptoms may vary—some individuals report minor problems, whilst others experience severe discomfort and disability. In many cases the symptoms are mild enough to go unnoticed. The time period between episodes is known to vary between individuals. HNPP has not been found to alter the lifespan, although in some cases a decline in quality of life is noticed. Some sufferers (10-15%) report various pains growing in severity with progression of the disease. The nerves most commonly affected are the peroneal nerve at the fibular head (leg and feet), the ulnar nerve at the elbow (arm), and the median nerve at the wrist (palm, thumbs and fingers), but any peripheral nerve can be affected. HNPP is part of the group of hereditary motor and sensory neuropathy (HMSN) disorders and is linked to Charcot–Marie–Tooth disease (CMT).
Among the signs/symptoms of hereditary neuropathy with liability to pressure palsy are the following (different symptoms are caused by different nerves, such as the "foot drop" is caused by the "peroneal nerve"):
Cranial nerve disease is an impaired functioning of one of the twelve cranial nerves. Although it could theoretically be considered a mononeuropathy, it is not considered as such under MeSH.
It is possible for a disorder of more than one cranial nerve to occur at the same time, if a trauma occurs at a location where many cranial nerves run together, such as the jugular fossa. A brainstem lesion could also cause impaired functioning of multiple cranial nerves, but this condition would likely also be accompanied by distal motor impairment.
A neurological examination can test the functioning of individual cranial nerves, and detect specific impairments.
Five different clinical entities have been described under hereditary sensory and autonomic neuropathies – all characterized by progressive loss of function that predominantly affects the peripheral sensory nerves. Their incidence has been estimated to be about 1 in 25,000.
Congenital insensitivity to pain with anhidrosis (CIPA), also known as hereditary sensory and autonomic neuropathy type IV (HSAN IV), is characterized by insensitivity to pain, anhidrosis (the inability to sweat), and intellectual disability. The ability to sense all pain (including visceral pain) is absent, resulting in repeated injuries including: oral self-mutilation (biting of tongue, lips, and buccal mucosa); biting of fingertips; bruising, scarring, and infection of the skin; multiple bone fractures (many of which fail to heal properly); and recurrent joint dislocations resulting in joint deformity. Sense of touch, vibration, and position are normal. Anhidrosis predisposes to recurrent febrile episodes that are often the initial manifestation of CIPA. Hypothermia in cold environments also occurs. Intellectual disability of varying degree is observed in most affected individuals; hyperactivity and emotional lability are common.
Hereditary sensory neuropathy type IV (HSN4) is a rare genetic disorder characterized by the loss of sensation (sensory loss), especially in the feet and legs and, less severely, in the hands and forearms. The sensory loss is due to abnormal functioning of small, unmyelinated nerve fibers and portions of the spinal cord that control responses to pain and temperature as well as other involuntary or automatic body processes. Sweating is almost completely absent with this disorder. Intellectual disability is usually present.
Type 4, congenital insensitivity to pain with anhidrosis (CIPA), is an autosomal recessive condition and affected infants present with episodes of hyperthermia unrelated to environmental temperature, anhidrosis and insensitivity to pain. Palmar skin is thickened and charcot joints are commonly present. NCV shows motor and sensory nerve action potentials to be normal. The histopathology of peripheral nerve biopsy reveals absent small unmyelinated fibers and mitochondria are abnormally enlarged.
Management of Hereditary sensory and autonomic neuropathy Type 4:
Treatment of manifestations: Treatment is supportive and is best provided by specialists in pediatrics, orthopedics, dentistry, ophthalmology, and dermatology. For anhidrosis: Monitoring body temperature helps to institute timely measures to prevent/manage hyperthermia or hypothermia. For insensitivity to pain: Modify as much as reasonable a child’s activities to prevent injuries. Inability to provide proper immobilization as a treatment for orthopedic injuries often delays healing; additionally, bracing and invasive orthopedic procedures increase the risk for infection. Methods used to prevent injuries to the lips, buccal mucosa, tongue, and teeth include tooth extraction, and/or filing (smoothing) of the sharp incisal edges of teeth, and/or use of a mouth guard. Skin care with moisturizers can help prevent palmar and plantar hyperkeratosis and cracking and secondary risk of infection; neurotrophic keratitis is best treated with routine care for dry eyes, prevention of corneal infection, and daily observation of the ocular surface. Interventions for behavioral, developmental, and motor delays as well as educational and social support for school-age children and adolescents are recommended.
Prevention of secondary complications: Regular dental examinations and restriction of sweets to prevent dental caries; early treatment of dental caries and periodontal disease to prevent osteomyelitis of the mandible. During and following surgical procedures, potential complications to identify and manage promptly include hyper- or hypothermia and inadequate sedation, which may trigger unexpected movement and result in secondary injuries.
Neuropathy disorders usually have onset in childhood or young adulthood. Motor symptoms seem to be more predominant that sensory symptoms. Symptoms of these disorders include: fatigue, pain, lack of balance, lack of feeling, lack of reflexes, and lack of sight and hearing, which result from muscle atrophy. Patients can also suffer from high arched feet, hammer toes, foot drop, foot deformities, and scoliosis. These symptoms are a result of severe muscular weakness and atrophy. In patients suffering from demyelinating neuropathy, symptoms are due to slow nerve conduction velocities, however people with axonal degradation have average to normal nerve conduction velocities.
Sensory symptoms of small fiber neuropathy are highly variable. Common complaints include paresthesias, dysesthesias, and insensitivity to pain. "Paresthesias" are abnormal sensations. They are often described as numbness, burning, cold, prickling, pins and needles along with other symptoms. "Dysesthesias" are unpleasant sensations, either spontaneous or evoked. A light breeze, the feeling of clothes, or even a soft touch can cause pain.
Insensitivity to pain can be particular problem. One may be bleeding or have a skin injury without even knowing it.
Facial nerve paralysis may be divided into supranuclear and infranuclear lesions.
Facial nerve paralysis is characterised by unilateral facial weakness, with other symptoms including loss of taste, , and decreased salivation and tear secretion. Other signs may be linked to the cause of the paralysis, such as s in the ear, which may occur if the facial palsy is due to shingles. Symptoms may develop over several hours. Acute facial pain radiating from the ear may precede the onset of other symptoms.
Like many polyneuropathies, the symptoms are length-dependent, starting in the longer nerves and progressively attack shorter nerves. This means that most often the symptoms start in the feet and progress upwards, and usually symptoms are more severe in the feet. Many patients have a widespread, length independent, or "patchy", presentation which is sporadic and can affect many nerves, including the trigeminal nerve or occipital nerve.
Patients with Fabry disease have isolated small fiber engagement, and can have a more widespread small fiber disruption.
Symptoms of CMT usually begin in early childhood or early adulthood, but can begin later. Some people do not experience symptoms until their early thirties or forties. Usually, the initial symptom is foot drop early in the course of the disease. This can also cause hammer toe, where the toes are always curled. Wasting of muscle tissue of the lower parts of the legs may give rise to a "stork leg" or "inverted champagne bottle" appearance. Weakness in the hands and forearms occurs in many people as the disease progresses.
Loss of touch sensation in the feet, ankles and legs, as well as in the hands, wrists and arms occur with various types of the disease. Early and late onset forms occur with 'on and off' painful spasmodic muscular contractions that can be disabling when the disease activates. High-arched feet (pes cavus) or flat-arched feet (pes planus) are classically associated with the disorder. Sensory and proprioceptive nerves in the hands and feet are often damaged, while unmyelinated pain nerves are left intact. Overuse of an affected hand or limb can activate symptoms including numbness, spasm, and painful cramping.
Symptoms and progression of the disease can vary. Involuntary grinding of teeth as well as squinting are prevalent and often go unnoticed by the person affected. Breathing can be affected in some; so can hearing, vision, as well as the neck and shoulder muscles. Scoliosis is common, causing hunching and loss of height. Hip sockets can be malformed. Gastrointestinal problems can be part of CMT, as can difficulty chewing, swallowing, and speaking (due to atrophy of vocal cords). A tremor can develop as muscles waste. Pregnancy has been known to exacerbate CMT, as well as severe emotional stress. Patients with CMT must avoid periods of prolonged immobility such as when recovering from a secondary injury as prolonged periods of limited mobility can drastically accelerate symptoms of CMT.
Pain due to postural changes, skeletal deformations, muscle fatigue and cramping is fairly common in people with CMT. It can be mitigated or treated by physical therapies, surgeries, and corrective or assistive devices. Analgesic medications may also be needed if other therapies do not provide relief from pain. Neuropathic pain is often a symptom of CMT, though, like other symptoms of CMT, its presence and severity varies from case to case. For some people, pain can be significant to severe and interfere with daily life activities. However, pain is not experienced by all people with CMT. When neuropathic pain is present as a symptom of CMT, it is comparable to that seen in other peripheral neuropathies, as well as postherpetic neuralgia and complex regional pain syndrome, among other diseases.
The first sign of hemifacial spasm is typically muscle movement in the patient's eyelid and around the eye. It can vary in intensity. The intermittent twitching of the eyelid, which can result in forced closure of the eye which gradually spreads to the muscles of the lower part of the face (Typical form- See Image). In atypical form the spasms start in the cheekbone area and spreads to the eyelid. Ultimately, all the muscles on that side are affected, nearly all the time. This sometimes causes the mouth to be pulled to the side. Experts have linked hemifacial spasm to facial nerve injury, Bell's palsy and tumors. Although the most frequent cause is a blood vessel pressing on the facial nerve at the spot where it leaves the patient's brain stem, sometimes there is no known cause. When the affected individual is younger than 40, doctors suspect an underlying cause such as multiple sclerosis.
The facial nerve is the seventh of 12 cranial nerves. This cranial nerve controls the muscles in the face. Facial nerve palsy is more abundant in older adults than in children and is said to affect 15-40 out of 100,000 people per year. This disease comes in many forms which include congenital, infectious, traumatic, neoplastic, or idiopathic. The most common cause of this cranial nerve damage is Bell's palsy (idiopathic facial palsy) which is a paralysis of the facial nerve. Although Bell's palsy is more prominent in adults it seems to be found in those younger than 20 or older than 60 years of age. Bell's Palsy is thought to occur by an infection of the herpes virus which may cause demyelination and has been found in patients with facial nerve palsy. Symptoms include flattening of the forehead, sagging of the eyebrow, and difficulty closing the eye and the mouth on the side of the face that is affected. The inability to close the mouth causes problems in feeding and speech. It also causes lack of taste, acrimation, and sialorrhea.
The use of steroids can help in the treatment of Bell's Palsy. If in the early stages, steroids can increase the likelihood of a full recovery. This treatment is used mainly in adults. The use of steroids in children has not been proven to work because they seem to recover completely with or without them. Children also tend to have better recovery rates than older adults. Recovery rate also depends on the cause of the facial nerve palsy (e.g. infections, perinatal injury, congenital dysplastic). If the palsy is more severe patients should seek steroids or surgical procedures. Facial nerve palsy may be the indication of a severe condition and when diagnosed a full clinical history and examination are recommended.
Although rare, facial nerve palsy has also been found in patients with HIV seroconversion. Symptoms found include headaches (bitemporal or occipital), the inability to close the eyes or mouth, and may cause the reduction of taste. Few cases of bilateral facial nerve palsy have been reported and is said to only effect 1 in every 5 million per year.
Hereditary motor and sensory neuropathies (HMSN) is a name sometimes given to a group of different neuropathies which are all characterized by their impact upon both afferent and efferent neural communication. HMSN are characterised by atypical neural development and degradation of neural tissue. The two common forms of HMSN are either hypertrophic demyelinated nerves or complete atrophy of neural tissue. Hypertrophic condition causes neural stiffness and a demyelination of nerves in the peripheral nervous system, and atrophy causes the breakdown of axons and neural cell bodies. In these disorders, a patient experiences progressive muscle atrophy and sensory neuropathy of the extremities.
The term "hereditary motor and sensory neuropathy" was used mostly historically to denote the more common forms Charcot–Marie–Tooth disease (CMT). With the identification of a wide number of genetically and phenotypically distinct forms of CMT, the term HMSN is now used less frequently.
Neuritis is a general term for inflammation of a nerve or the general inflammation of the peripheral nervous system. Symptoms depend on the nerves involved, but may include pain, paresthesia (pins-and-needles), paresis (weakness), hypoesthesia (numbness), anesthesia, paralysis, wasting, and disappearance of the reflexes.
Causes of neuritis include:
Hemifacial spasm (HFS) is a rare neuromuscular disease characterized by irregular, involuntary muscle contractions (spasms) on one side (hemi-) of the face (-facial). The facial muscles are controlled by the facial nerve (seventh cranial nerve), which originates at the brainstem and exits the skull below the ear where it separates into five main branches.
This disease takes two forms: typical and atypical. In typical form, the twitching usually starts in the lower eyelid in orbicularis oculi muscle. As time progresses, it spreads to the whole lid, then to the orbicularis oris muscle around the lips, and buccinator muscle in the cheekbone area. The reverse process of twitching occurs in atypical hemifacial spasm; twitching starts in orbicularis oris muscle around the lips, and buccinator muscle in the cheekbone area in the lower face, then progresses up to the orbicularis oculi muscle in the eyelid as time progresses. The most common form is the typical form, and atypical form is only seen in about 2–3% of patients with hemifacial spasm. The incidence of hemifacial spasm is approximately 0.8 per 100,000 persons.
This disorder occurs in both men and women, although it affects middle-aged or elderly women more frequently. Hemifacial spasm is much more common in some Asian populations. It may be caused by a facial nerve injury, a tumor, or it may have no apparent cause. Individuals with spasm on both sides of the face are very rare.
Symptoms of the Roussy–Lévy syndrome mainly stem from nerve damage and the resulting progressive muscle atrophy. Neurological damage may result in absent tendon reflexes (areflexia), some distal sensory loss and decreased excitability of muscles to galvanic and faradic stimulation. Progressive muscle wasting results in weakness of distal limb muscles (especially the peronei), gait ataxia, pes cavus, postural tremors and static tremor of the upper limbs, kyphoscoliosis, and foot deformity.
These symptoms frequently translate into delayed onset of ability to walk, loss of coordination and balance, foot drop, and foot-bone deformities. They are usually first observed during infancy or early childhood, and slowly progress until about age 30, at which point progression may stop in some individuals, or symptoms may continue to slowly progress.
Facial Synkinesis is a common sequela to Idiopathic Facial Nerve Paralysis, also called Bell’s Palsy or Facial Palsy. Bell’s Palsy, which is thought to occur due to a viral reactivation which can lead (through unknown mechanisms) to diffuse axon demyelination and degeneration of the seventh cranial nerve, results in a hemifacial paralysis due to non-functionality of the nerve. As the nerve attempts to recover, nerve miswiring results (see Mechanism of Action below). In patients with severe facial nerve paralysis, facial synkinesis will inevitably develop.
Additionally, a common treatment option for facial palsy is to use electrical stimulation. Unfortunately, this has been shown to be disruptive to normal re-innervation and can promote the development of synkinesis.
The most common symptoms of facial synkinesis include:
- Eye closure with volitional contraction of mouth muscles
- Midfacial movements with volitional eye closure
- Neck tightness (Platysmal contraction) with volitional smiling
- Hyperlacrimation(also called Crocodile Tears)
- A case where eating provokes excessive lacrimation. This has been attributed to neural interaction between the salivary glands and the lacrimal glands.
Symptoms of neurotmesis include but are not limited to pain, dysesthesias (uncomfortable sensations), and complete loss of sensory and motor function of the affected nerve.
Those with diseases or dysfunctions of their nerves may present with problems in any of the normal nerve functions. Symptoms vary depending on the types of nerve fiber involved.In terms of sensory function, symptoms commonly include loss of function ("negative") symptoms, including , tremor, impairment of balance, and gait abnormality. Gain of function (positive) symptoms include tingling, pain, itching, crawling, and pins-and-needles.
Motor symptoms include loss of function ("negative") symptoms of weakness, tiredness, muscle atrophy, and gait abnormalities; and gain of function ("positive") symptoms of cramps, and muscle twitch (fasciculations).
In the most common form, length-dependent peripheral neuropathy, pain and parasthesia appears symmetrically and generally at the terminals of the longest nerves, which are in the lower legs and feet. Sensory symptoms generally develop before motor symptoms such as weakness. Length-dependent peripheral neuropathy symptoms make a slow ascent of leg, while symptoms may never appear in the upper limbs; if they do, it will be around the time that leg symptoms reach the knee. When the nerves of the autonomic nervous system are affected, symptoms may include constipation, dry mouth, difficulty urinating, and dizziness when standing.
Almost all cases of synkinesis develop as a sequel to nerve trauma (the exception is when it is congenitally acquired as in Duane-Retraction Syndrome and Marcus Gunn phenomenon). Trauma to the nerve can be induced in cases such as surgical procedures, nerve inflammation, neuroma
, and physical injury.
FLD produces rapidly progressive weakness of tongue, face and pharyngeal muscles in a clinical pattern similar to myasthenia. Neuromuscular transmission may be abnormal in these muscles because of rapid denervation and immature reinnervation. Paralysis occurs secondary to degeneration of the motor neurons of the brain stem. It causes progressive bulbar paralysis due to involvement of motor neurons of the cranial nerve nuclei. The most frequent symptoms at onset of progressive bulbar paralysis of childhood has been a unilateral facial paralysis. It is followed in frequency by dysarthria due to facial weakness or by dysphagia. Palatal weakness and palpebral ptosis also have been reported in few patients. Both sexes can be affected.
Weber's syndrome (also known as superior alternating hemiplegia) has a few distinct symptoms: contralateral hemiparesis of limb and facial muscle accompanied by weakness in one or more muscles that control eye movement on the same side. Another symptom that appears is the loss of eye movement due to damage to the oculomotor nerve fibers. The upper and lower extremities have increased weakness.
Peripheral nerve injuries can be classified in two different ways. Neurotmesis is classified under the Seddon system which is defined by three grades of nerve injury. The mildest grade is referred to as neurapraxia and is characterized by a reduction or complete blockage of conduction across a segment of nerve while axonal continuity is maintained and nerve conduction is preserved. These injuries are almost always reversed and a recovery takes place within days or weeks. The second classification of the Seddon system is referred to as axonotmesis which is a more severe case of peripheral nerve injury. Axonotmesis is classified by an interruption of the axons, but a preservation of the surrounding connective tissues around the axon. These injuries can heal themselves at about 1mm/day, therefore resulting in recovery to be possible but at a slower rate than neurapraxia. The last and most severe case of peripheral nerve injury is known as neurotmesis, which in most cases cannot be completely recovered from even with surgical repair.
The second classification of nerve injury is known as the Sunderland classification which is more complex and specific. This classification uses five different degrees of nerve injury, the first one being the least severe and the equivalent to neurapraxia and the most severe being the fifth degree and having the same classification as neurotmesis. The second through fourth degrees are dependent on the variance of axon discontinuity and are classified under Seddon’s classification of axonotmesis.
Most patients experience poorly localised pain in the forearm. The pain is sometimes referred into the cubital fossa and elbow pain has been reported as being a primary complaint.
The characteristic impairment of the pincer movement of the thumb and index finger is most striking.