Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Persons with HDLS can suffer from tremors, decreased body movement, unsteadiness (Parkinsonism, muscles on one side of the body in constant contraction (spastic hemiparesis), impairment in motor and sensory function in the lower extremities (paraparesis), paralysis resulting in partial or total loss of all extremities and torso (tetraparesis), and the lack of voluntary coordination of muscle movements (ataxia).
With symptoms of personality changes, behavioral changes, dementia, depression, and epilepsy, HDLS has been commonly misdiagnosed for a number of other diseases. Dementia or frontotemporal behavioral changes, for example, have commonly steered some clinicians to mistakenly consider diagnoses such as Alzheimer’s disease, frontotemporal dementia or atypical Parkinsonism. The presence of white matter changes has led to misdiagnosis of multiple sclerosis. HDLS commonly manifests with neuropsychiatric symptoms, progressing to dementia, and after a few years shows motor dysfunction. Eventually patients become wheelchair-bound or bedridden.
White matter degeneration is associated with and makes differential diagnoses out of other adult onset leukodystrophies such as metachromatic leukodystrophy (MLD), Krabbe disease (globoid cell leukodystrophy), and X-linked adrenoleukodystrophy (X-ADL).
Symptoms of JPLS begin in early childhood and progress over a period of 15 to 20 years. Early symptoms include clumsiness, muscle spasms, weakness and stiffness in the legs, and difficulty with balance. As symptoms progress, they become more serious and include weakness and stiffness in the arms and hands, slurred speech, drooling, difficulty swallowing, and an inability to walk.
Symptoms of MMND begin appearing when people are young, often before the age of 15. An affected individual is generally thin with weak arms and legs. They may lose control of the muscles that control their face, mouth, nose, and throat. This in turn, will cause difficulties speaking and swallowing. Further complications from the loss of facial motor control include drooling, as well facial droop. People with MMND may also suffer from a loss of hearing and sight.
Juvenile primary lateral sclerosis (JPLS) ", also known as primary lateral sclerois (PLSJ)," is a rare genetic disorder, with a small number of reported cases, characterized by progressive weakness and stiffness of muscles in the arms, legs, and face. The disorder damages motor neurons, which are specialized nerve cells in the brain and spinal cord that control muscle movement.
Madras motor neuron disease (MMND) is a motor neuron disease affecting primarily lower motor neurons. It is similar to Monomelic amyotrophy and primarily affects young adults in southern India.
Authors of a large case study, published in 2008, proposed that MMND be divided into two categories: spontaneously-arising MMND and Familial Madras Motor Neuron Disease (FMMND). Using this method, cases in which the disease is inherited would be categorized as FMMND, while cases that displayed no genetic linkage would be categorized as spontaneously-arising MMND.
According to the same study, there is a variant form known as MMNDV, which is classified by additional optic atrophy.
Due to the rareness of MMND, it is classified as a orphan disease.
Symptoms are similar to those in multiple sclerosis and may include dementia, aphasia, seizures, personality changes, poor attention, tremors, balance instability, incontinence, muscle weakness, headache, vomiting, and vision and speech impairment.
Neurodegeneration is the progressive loss of structure or function of neurons, including death of neurons. Many neurodegenerative diseases – including amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's – occur as a result of neurodegenerative processes. Such diseases are incurable, resulting in progressive degeneration and/or death of neuron cells. As research progresses, many similarities appear that relate these diseases to one another on a sub-cellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate many diseases simultaneously. There are many parallels between different neurodegenerative disorders including atypical protein assemblies as well as induced cell death. Neurodegeneration can be found in many different levels of neuronal circuitry ranging from molecular to systemic.
Being an extremely rare autosomal genetic disorder, differential diagnosis has only led to several cases since 1972. Initial diagnosis lends itself to facial abnormalities including sloping forehead, maxillary hypoplasia, nasal bridge depression, wide mouth, dental maloclusion, and receding chin. Electroencephalography (EEG), computed tomography (CT) scanning, and skeletal survey are further required for confident diagnosis. Commonly, diffuse cartilage calcification and brachytelephalangism are identified by X-radiation (X-ray), while peripheral pulmonary arterial stenosis, hearing loss, dysmorphic facies, and mental retardation are confirmed with confidence by the aforementioned diagnostic techniques.
Diagnosis is often confirmed by several abnormalities of skeletal origin. There is a sequential order of findings, according to Cormode et al., which initiate in abnormal cartilage calcification and later brachytelephalangism. The uniqueness of brachytelephalangy in KS results in distinctively broadened and shortened first through fourth distal phalanges, while the fifth distal phalanx bone remains unaffected. Radiography also reveals several skeletal anomalies including facial hypoplasia resulting in underdevelopment of the nasal bridge with noticeably diminished alae nasi. In addition to distinguishable facial features, patients generally demonstrate shorter than average stature and general mild developmental delay.
Diffuse myelinoclastic sclerosis, sometimes referred to as Schilder's disease, is a very infrequent neurodegenerative disease that presents clinically as pseudotumoural demyelinating lesions, that make its diagnosis difficult. It usually begins in childhood, affecting children between 5 and 14 years old, but cases in adults are possible.
This disease is considered one of the borderline forms of multiple sclerosis because some authors consider them different diseases and others MS variants. Other diseases in this group are neuromyelitis optica (NMO), Balo concentric sclerosis and Marburg multiple sclerosis.
ALS is a motor neuron disease, also spelled "motor neurone disease", which is a group of neurological disorders that selectively affect motor neurons, the cells that control voluntary muscles of the body, including amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, progressive muscular atrophy, progressive bulbar palsy, pseudobulbar palsy, and spinal muscular atrophy.
ALS itself can be classified a few different ways: by how fast the disease progresses (slow vs fast progressors), by whether it is inherited or sporadic, and by where it starts. Most commonly (~70% of the time) the limbs are affected first. In this case, neurons in the brain (upper motor neurons) and in the spinal cord (lower motor neurons) are dying and this form is called "limb onset". In about 25% of cases, muscles in the face, mouth, and throat are affected first because motor neurons in the part of the brain stem called the medulla oblongata (formerly called the "bulb") start to die first along with lower motor neurons. This form is called "bulbar onset". In about 5% of cases muscles in the trunk of the body are affected first. In all cases the disease spreads and affects other regions. The symptoms may also be limited to one spinal region.
Those with leg amyotrophic diplegia and brachial amyotrophic diplegia have a longer survival compared to classic onset ALS.
As with bodig, the symptoms and forms of lytico present themselves differently from patient to patient.
Patient presentations include muscle atrophy, maxillofacial paralysis, inability to speak or swallow and subsequent choking. Some patients retain mental lucidity throughout the illness until death, much like ALS patients.
Diaphragm and respiratory accessory muscles can become paralyzed necessitating mechanical ventilation to facilitate breathing. Saliva must be suctioned from the mouth to prevent aspiration. This form of lytico-bodig is fatal in all cases.
The disorder causes muscle weakness and atrophy throughout the body due to the degeneration of the upper and lower motor neurons. Individuals affected by the disorder may ultimately lose the ability to initiate and control all voluntary movement, although bladder and bowel function and the muscles responsible for eye movement are usually spared until the final stages of the disorder.
Cognitive or behavioral dysfunction is present in 30–50% of individuals with ALS. Around half of people with ALS will experience mild changes in cognition and behavior, and 10–15% will show signs of frontotemporal dementia. Repeating phrases or gestures, apathy, and loss of inhibition are frequently reported behavioral features of ALS. Language dysfunction, executive dysfunction, and troubles with social cognition and verbal memory are the most commonly reported cognitive symptoms in ALS; a meta-analysis found no relationship between dysfunction and disease severity. However, cognitive and behavioral dysfunctions have been found to correlate with reduced survival in people with ALS and increased caregiver burden; this may be due in part to deficits in social cognition. About half the people who have ALS experience emotional lability, in which they cry or laugh for no reason.
Sensory nerves and the autonomic nervous system are generally unaffected, meaning the majority of people with ALS maintain hearing, sight, touch, smell, and taste.
Lytico-bodig disease presents itself in two ways:
- lytico is a progressive paralysis that resembles ALS (amyotrophic lateral sclerosis)
- bodig is a condition resembling parkinsonism with occasional dementia.
Frontotemporal lobar degeneration (FTLD) is a pathological process that occurs in frontotemporal dementia. It is characterized by atrophy in the frontal lobe and temporal lobe of the brain, with sparing of the parietal and occipital lobes.
Common proteinopathies that are found in FTLD include the accumulation of Tau proteins and TARDBPs. Mutations in the C9orf72 gene have been established as a major genetic contribution of FTLD, although defects in the GRN and MAPT genes are also associated with it.
There are 3 main histological subtypes found at post-mortem:
- FTLD-tau is characterised by tau positive inclusions often referred to as Pick-bodies. Examples of FTLD-tau include; Pick's disease, corticobasal degeneration, progressive supranuclear palsy.
- FTLD-TDP (or FTLD-U ) is characterised by ubiquitin and TDP-43 positive, tau negative, FUS negative inclusions. The pathological histology of this subtype is so diverse it is subdivided into four subtypes based on the detailed histological findings:
Two physicians independently categorized the various forms of TDP-43 associated disorders. Both classifications were considered equally valid by the medical community, but the physicians in question have jointly proposed a compromise classification to avoid confusion.
- FTLD-FUS; which is characterised by FUS positive cytoplasmic inclusions, intra nuclear inclusions, and neuritic threads. All of which are present in the cortex, medulla, hippocampus, and motor cells of the spinal cord and XIIth cranial nerve.
Dementia lacking distinctive histology (DLDH) is a rare and controversial entity. New analyses have allowed many cases previously described as DLDH to be reclassified into one of the positively defined subgroups.
Susac's syndrome is named for Dr. John Susac (1940–2012), of Winter Haven, Florida, who first described it in 1979. Susac's syndrome is a very rare disease, of unknown cause, and many persons who experience it do not display the bizarre symptoms named here. Their speech can be affected, such as the case of a female of late teens who suffered speech issues and hearing problems, and many experience unrelenting and intense headaches and migraines, some form of hearing loss, and impaired vision. The problem usually corrects itself, but this can take up to five years. In some cases, subjects can become confused. The syndrome usually affects women around the age of 18 years, with female to male ratio of cases of 2:1.
William F. Hoyt was the first to call the syndrome "Susac syndrome" and later Robert Daroff asked Dr. Susac to write an editorial in Neurology about the disorder and to use the eponym of Susac syndrome in the title, forever linking this disease with him.
Patients typically present with low frequency hearing loss detectable via an audiogram. Headaches are frequently present in addition to roaring tinnitus and often some degree of paranoia. Partial vision loss is often present and caused by branch retinal artery occlusions. The presence of refractile or non-refractile yellow Gass plaques in the retinal arterioles is near pathognomonic for the disease. Fluorescein angiography may demonstrate leakage in areas remote from the retinal infarctions.
Symptoms of standard MS consist of both sensory and motor symptoms. The more common symptoms include spasticity, visual loss, difficulty in walking and paresthesia which is a feeling of tickling or numbness of the skin. but symptoms of tumefactive MS are not so clear. They often mimic a variety of other diseases including ischemic stroke, peroneal nerve palsy and intracranial neurologic disease.
Subjects have been reported to suffer from a decreased motor control resulting in a ‘foot drop’, or significantly reduced leg movement. In other cases closer mimicking strokes, subjects may suffer from confusion, dizziness, and weakness in one side of the face. Symptoms also can mimic a neoplasm with symptoms such as headaches, aphasia, and/ or seizures.[13]
There are some differences with normal MS symptoms.
Spasticity is not as in tumefactive cases, because it standard MS it is caused by demyelination or inflammation in the motor areas of the brain or the spinal cord. This upper motor neuron syndrome appears when motor control of skeletal muscles is affected due to damage to the efferent motor pathways. Spasticity is an involuntary muscle movement like an exaggerated stretch reflex, which is when a muscle overcompensates and contracts too much in response to the muscle being stretched. It is believed that spasticity is the result of the lack of inhibitory control on the muscles, an effect of neuronal damage.
Visual loss or disturbances are also different. In standard MS are a result of inflammation of the optic nerve, known as optic neuritis. The effects of optic neuritis can be loss of color perception and worsening vision. Vision loss usually starts off centrally in one eye and may lead to complete loss of vision after a period of time.
The possible cognitive dysfunction is also rare in tumefactive cases. MS patients may show signs of cognitive impairment where there is a reduction in the speed of information processing, a weaker short-term memory and a difficulty in learning new concepts. This cognitive impairment is associated with the loss of brain tissue, known as brain atrophy which is a result of the demyelination process in MS.
About fatigue, most MS patients experience fatigue and this could be a direct result of the disease, depression or sleep disturbances due to MS. It is not clearly understood how MS results in physical fatigue but it is known that the repetitive usage of the same neural pathways results in nerve fiber fatigue that could cause neurological symptoms. Such repeated usage of neural pathways include continuous reading which may result in temporary vision failure.
Inflammatory demyelinating diseases (IDDs), sometimes called Idiopathic (IIDDs) because the unknown etiology of some of them, and sometimes known as borderline forms of multiple sclerosis, is a collection of multiple sclerosis variants, sometimes considered different diseases, but considered by others to form a spectrum differing only in terms of chronicity, severity, and clinical course.
Multiple Sclerosis for some people is a syndrome more than a single disease. It can be considered among the acquired demyelinating syndromes with a multiphasic instead of monophasic behaviour. Multiple sclerosis also has a prodromal stage in which an unknown underlying condition, able to damage the brain, is present, but no lesion has still developed.
In medicine, proteopathy (Proteo- ["pref". protein]; -pathy ["suff". disease]; proteopathies "pl".; proteopathic "adj".) refers to a class of diseases in which certain proteins become structurally abnormal, and thereby disrupt the function of cells, tissues and organs of the body. Often the proteins fail to fold into their normal configuration; in this misfolded state, the proteins can become toxic in some way (a gain of toxic function) or they can lose their normal function. The proteopathies (also known as proteinopathies, protein conformational disorders, or protein misfolding diseases) include such diseases as Creutzfeldt–Jakob disease and other prion diseases, Alzheimer's disease, Parkinson's disease, amyloidosis, and a wide range of other disorders (see List of Proteopathies).
The concept of proteopathy can trace its origins to the mid-19th century, when, in 1854, Rudolf Virchow coined the term amyloid ("starch-like") to describe a substance in cerebral corpora amylacea that exhibited a chemical reaction resembling that of cellulose. In 1859, Friedreich and Kekulé demonstrated that, rather than consisting of cellulose, "amyloid" actually is rich in protein. Subsequent research has shown that many different proteins can form amyloid, and that all amyloids have in common birefringence in cross-polarized light after staining with the dye Congo Red, as well as a fibrillar ultrastructure when viewed with an electron microscope. However, some proteinaceous lesions lack birefringence and contain few or no classical amyloid fibrils, such as the diffuse deposits of Aβ protein in the brains of Alzheimer patients. Furthermore, evidence has emerged that small, non-fibrillar protein aggregates known as oligomers are toxic to the cells of an affected organ, and that amyloidogenic proteins in their fibrillar form may be relatively benign.
Early-onset Alzheimer's disease, also called early-onset Alzheimer's, or early-onset AD, is Alzheimer's disease diagnosed before the age of 65. It is an uncommon form of Alzheimer's, accounting for only 5-10% of all Alzheimer's cases. Approximately 13% of the cases of early-onset Alzheimer's are familial Alzheimer's disease, where a genetic predisposition leads to the disease. The other incidences of early onset Alzheimer's, however, share the same traits as the 'late onset' form of Alzheimer's disease, and little is understood about how it starts.
Non-familial early onset Alzheimer's can develop in people who are in their thirties or forties, but that is extremely rare. The majority of people with early-onset Alzheimer's are in their fifties or early sixties.
Fatal familial insomnia (FFI) is an extremely rare autosomal dominant inherited prion disease of the brain. It is almost always caused by a mutation to the protein PrP, but can also develop spontaneously in patients with a non-inherited mutation variant called sporadic fatal insomnia (sFI). FFI has no known cure and involves progressively worsening insomnia, which leads to hallucinations, delirium, confusional states like that of dementia, and eventually, death. The average survival time for patients diagnosed with FFI after the onset of symptoms is 18 months.
The mutated protein, called PrP, has been found in just 40 families worldwide, affecting about 100 people; if only one parent has the gene, the offspring have a 50% risk of inheriting it and developing the disease. With onset usually around middle age, it is essential that a potential patient be tested if they wish to avoid passing FFI on to their children. The first recorded case was an Italian man, who died in Venice in 1765.
The age of onset is variable, ranging from 18 to 60, with an average of 50. The disease can be detected prior to onset by genetic testing. Death usually occurs between seven and thirty-six months from onset. The presentation of the disease varies considerably from person to person, even among patients from within the same family.
The disease has four stages:
1. The person has increasing insomnia, resulting in panic attacks, paranoia, and phobias. This stage lasts for about four months.
2. Hallucinations and panic attacks become noticeable, continuing for about five months.
3. Complete inability to sleep is followed by rapid loss of weight. This lasts for about three months.
4. Dementia, during which the patient becomes unresponsive or mute over the course of six months. This is the final progression of the disease, after which death follows.
Other symptoms include profuse sweating, pinpoint pupils, the sudden entrance into menopause for women and impotence for men, neck stiffness, and elevation of blood pressure and heart rate. Constipation is common as well. As the disease progresses, the patient will become stuck in a state of pre-sleep limbo, or hypnagogia, which is the state just before sleep in healthy individuals. During these stages, it is common for patients to repeatedly move their limbs as if dreaming.
The first reported case in the Netherlands was of a 57-year-old man of Egyptian descent. The man came in with symptoms of double vision and progressive memory loss, and his family also noted he had recently become disoriented, paranoid, and confused. While he tended to fall asleep during random daily activities, he experienced vivid dreams and random muscular jerks during normal slow wave sleep. After four months of these symptoms, he started having convulsions in the hands, trunk, and lower limbs while awake. The patient died at 58 (seven months after the onset of symptoms). An autopsy was completed which revealed mild atrophy of the frontal cortex and moderate atrophy of the thalamus. The atrophy of the thalamus is one of the most common signs of fatal familial insomnia.