Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms of high blood sugar including increased thirst (polydipsia), increased volume of urination (polyurea), and increase hunger (polyphagia).
Symptoms of HHS include:
- Altered level of consciousness
- Neurologic signs including: blurred vision, headaches, focal seizures, myoclonic jerking, reversible paralysis
- Motor abnormalities including flaccidity, depressed reflexes, tremors or fasiciculations
- Hyperviscosity and increased risk of blood clot formation
- Dehydration
- Weight loss
- Nausea, vomiting, and abdominal pain
- Weakness
- Low blood pressure with standing
The major differential diagnosis is diabetic ketoacidosis (DKA). In contrast to DKA, serum glucose levels in HHS are extremely high, usually greater than 40-50 mmol/L (600 mg/dL). Metabolic acidosis is absent or mild. A temporary state of confusion (delirium) is also more common in HHS than DKA. HHS also tends to affect older people more. DKA may have fruity breath, and rapid and deep breathing.
DKA often has serum glucose level greater than 300 mg/dL (HHS is >600 mg/dL). DKA usually occurs in type 1 diabetics whereas HHS is more common in type 2 diabetics. DKA is characterized by a rapid onset, and HHS occurs gradually over a few days. DKA also is characterized by ketosis due to the breakdown of fat for energy.
Both DKA and HHS may show symptoms of dehydration, increased thirst, increased urination, increased hunger, weight loss, nausea, vomiting, abdominal pain, blurred vision, headaches, weakness, and low blood pressure with standing.
The degree of hyperglycemia can change over time depending on the metabolic cause, for example, impaired glucose tolerance or fasting glucose, and it can depend on treatment. Temporary hyperglycemia is often benign and asymptomatic. Blood glucose levels can rise well above normal and cause pathological and functional changes for significant periods without producing any permanent effects or symptoms. During this asymptomatic period, an abnormality in carbohydrate metabolism can occur which can be tested by measuring plasma glucose. However, chronic hyperglycemia at above normal levels can produce a very wide variety of serious complications over a period of years, including kidney damage, neurological damage, cardiovascular damage, damage to the retina or damage to feet and legs. Diabetic neuropathy may be a result of long-term hyperglycemia. Impairment of growth and susceptibility to certain infection can occur as a result of chronic hyperglycemia.
Acute hyperglycemia involving glucose levels that are extremely high is a medical emergency and can rapidly produce serious complications (such as fluid loss through osmotic diuresis). It is most often seen in persons who have uncontrolled insulin-dependent diabetes.
The following symptoms may be associated with acute or chronic hyperglycemia, with the first three composing the classic hyperglycemic triad:
- Polyphagia – frequent hunger, especially pronounced hunger
- Polydipsia – frequent thirst, especially excessive thirst
- Polyuria – increased volume of urination (not an increased frequency for urination)
- Blurred vision
- Fatigue
- Restlessness
- Weight loss
- Poor wound healing (cuts, scrapes, etc.)
- Dry mouth
- Dry or itchy skin
- Tingling in feet or heels
- Erectile dysfunction
- Recurrent infections, external ear infections (swimmer's ear)
- Cardiac arrhythmia
- Stupor
- Coma
- Seizures
Frequent hunger without other symptoms can also indicate that blood sugar levels are too low. This may occur when people who have diabetes take too much oral hypoglycemic medication or insulin for the amount of food they eat. The resulting drop in blood sugar level to below the normal range prompts a hunger response. This hunger is not usually as pronounced as in Type I diabetes, especially the juvenile onset form, but it makes the prescription of oral hypoglycemic medication difficult to manage.
Polydipsia and polyuria occur when blood glucose levels rise high enough to result in excretion of excess glucose via the kidneys, which leads to the presence of glucose in the urine. This produces an osmotic diuresis.
Signs and symptoms of diabetic ketoacidosis may include:
- Ketoacidosis
- Kussmaul hyperventilation: deep, rapid breathing
- Confusion or a decreased level of consciousness
- Dehydration due to glycosuria and osmotic diuresis
- Acute hunger and/or thirst
- 'Fruity' smelling breath odor
- Impairment of cognitive function, along with increased sadness and anxiety
Hyperglycemia caused a decrease in cognitive performance, specifically in processing speed, and executive function and performance. Decreased cognitive performance may cause forgetfulness and concentration loss
In untreated hyperglycemia, a condition called ketoacidosis may develop because decreased insulin levels increase the activity of hormone sensitive lipase. The degradation of triacylglycerides by hormone-sensitive lipase produces free fatty acids that are eventually converted to acetyl-coA by beta-oxidation.
Ketoacidosis is a life-threatening condition which requires immediate treatment. Symptoms include: shortness of breath, breath that smells fruity (such as pear drops), nausea and vomiting, and very dry mouth.
Chronic hyperglycemia (high blood sugar) injures the heart in patients without a history of heart disease or diabetes and is strongly associated with heart attacks and death in subjects with no coronary heart disease or history of heart failure.
Also, life-threatening consequences of hyperglycemia is nonketotic hyperosmolar syndrome.
Diabetic ketoacidosis (DKA), if it progresses and worsens without treatment, can eventually cause unconsciousness, from a combination of a very high blood sugar level, dehydration and shock, and exhaustion. Coma only occurs at an advanced stage, usually after 36 hours or more of worsening vomiting and hyperventilation.
In the early to middle stages of ketoacidosis, patients are typically flushed and breathing rapidly and deeply, but visible dehydration, pale appearance from diminished perfusion, shallower breathing, and a fast heart rate are often present when coma is reached. However these features are variable and not always as described.
If the patient is known to have diabetes, the diagnosis of DKA is usually suspected from the appearance and a history of 1–2 days of vomiting. The diagnosis is confirmed when the usual blood chemistries in the emergency department reveal a high blood sugar level and severe metabolic acidosis.
Treatment of DKA consists of isotonic fluids to rapidly stabilize the circulation, continued intravenous saline with potassium and other electrolytes to replace deficits, insulin to reverse the ketoacidosis, and careful monitoring for complications.
People with type 1 diabetes mellitus who must take insulin in full replacement doses are most vulnerable to episodes of hypoglycemia. It is usually mild enough to reverse by eating or drinking carbohydrates, but blood glucose occasionally can fall fast enough and low enough to produce unconsciousness before hypoglycemia can be recognized and reversed. Hypoglycemia can be severe enough to cause unconsciousness during sleep. Predisposing factors can include eating less than usual or prolonged exercise earlier in the day. Some people with diabetes can lose their ability to recognize the symptoms of early hypoglycemia.
Unconsciousness due to hypoglycemia can occur within 20 minutes to an hour after early symptoms and is not usually preceded by other illness or symptoms. Twitching or convulsions may occur. A person unconscious from hypoglycemia is usually pale, has a rapid heart beat, and is soaked in sweat: all signs of the adrenaline response to hypoglycemia. The individual is not usually dehydrated and breathing is normal or shallow. Their blood sugar level, measured by a glucose meter or laboratory measurement at the time of discovery, is usually low but not always severely, and in some cases may have already risen from the nadir that triggered the unconsciousness.
Unconsciousness due to hypoglycemia is treated by raising the blood glucose with intravenous glucose or injected glucagon.
Diabetic hypoglycemia can be mild, recognized easily by the patient, and reversed with a small amount of carbohydrates eaten or drunk, or it may be severe enough to cause unconsciousness requiring intravenous dextrose or an injection of glucagon. Severe hypoglycemic unconsciousness is one form of diabetic coma. A common medical definition of severe hypoglycemia is "hypoglycemia severe enough that the person needs assistance in dealing with it". A co-morbidity is the issue of hypoglycemia unawareness. Recent research using machine learning methods have proved to be successful in predicting such severe hypoglycemia episodes.
Symptoms of diabetic hypoglycemia, when they occur, are those of hypoglycemia: neuroglycopenic, adrenergic, and abdominal. Symptoms and effects can be mild, moderate or severe, depending on how low the glucose falls and a variety of other factors. It is rare but possible for diabetic hypoglycemia to result in brain damage or death. Indeed, an estimated 2-4% of deaths of people with type 1 diabetes mellitus have been attributed to hypoglycemia.
In North America a mild episode of diabetic hypoglycemia is sometimes termed a "low" or an "insulin reaction," and in Europe a "hypo", although all of these terms are occasionally used interchangeably in North America, Europe, Australia and New Zealand. A severe episode is sometimes also referred to as "insulin shock".
In a counter-intuitive manifestation, hypoglycemia can trigger a Somogyi effect, resulting in a rebounding high blood sugar or hyperglycemia.
A commonly used "number" to define the lower limit of normal glucose is 70 mg/dl (3.9 mmol/l), though in someone with diabetes, hypoglycemic symptoms can sometimes occur at higher glucose levels, or may fail to occur at lower. Some textbooks for nursing and pre-hospital care use the range 80 mg/dl to 120 mg/dl (4.4 mmol/l to 6.7 mmol/l). This variability is further compounded by the imprecision of glucose meter measurements at low levels, or the ability of glucose levels to change rapidly.
Impaired fasting glucose is often without any signs or symptoms, other than higher than normal glucose levels being detected in an individual's fasting blood sample. There may be signs and symptoms associated with elevated blood glucose, though these are likely to be minor, with significant symptoms suggestive of complete progression to type 2 diabetes. Such symptoms include:
- Increased thirst
- Increased urination, especially waking up in the night to urinate
- Tiredness and fatigue
- Blurred vision
- Slow healing of wounds
- Altered sensation, such as numbness or tingling, particularly of the hands and feet
- Recurrent, and difficult to clear infections, particularly of the urinary tract
Diabetic coma is a medical emergency in which a person with diabetes mellitus is comatose (unconscious) because of one of the acute complications of diabetes:
1. Severe diabetic hypoglycemia
2. Diabetic ketoacidosis advanced enough to result in unconsciousness from a combination of severe hyperglycemia, dehydration and shock, and exhaustion
3. Hyperosmolar nonketotic coma in which extreme hyperglycemia and dehydration alone are sufficient to cause unconsciousness.
There are often no visible symptoms of hyperinsulinemia unless hypoglycaemia (low blood sugar) is present.
Some patients may experience a variety of symptoms when hypoglycaemia is present, including:
- Temporary muscle weakness
- Brain fog
- Fatigue
- Temporary thought disorder, or inability to concentrate
- Visual problems such as blurred vision or double vision
- Headaches
- Shaking/Trembling
- Thirst
If a person experiences any of these symptoms, a visit to a qualified medical practitioner is advised, and diagnostic blood testing may be required.
Cats will generally show a gradual onset of the disease over a few weeks or months, and it may escape notice for even longer.
The first outward symptoms are a sudden weight loss (or occasionally gain), accompanied by excessive drinking and urination; for example, cats can appear to develop an obsession with water and lurk around faucets or water bowls. Appetite is suddenly either ravenous (up to three-times normal) or absent. These symptoms arise from the body being unable to use glucose as an energy source.
A fasting glucose blood test will normally be suggestive of diabetes at this point. The same home blood test monitors used in humans are used on cats, usually by obtaining blood from the ear edges or paw pads. As the disease progresses, ketone bodies will be present in the urine, which can be detected with the same urine strips as in humans.
In the final stages, the cat starts wasting and the body will breaking down its own fat and muscle to survive. Lethargy or limpness, and acetone-smelling breath are acute symptoms of ketoacidosis and/or dehydration and is a medical emergency.
Untreated, diabetes leads to coma and then death.
Diabetic ketoacidosis (DKA) is an acute and dangerous complication that is always a medical emergency and requires prompt medical attention. Low insulin levels cause the liver to turn fatty acid to ketone for fuel (i.e., ketosis); ketone bodies are intermediate substrates in that metabolic sequence. This is normal when periodic, but can become a serious problem if sustained. Elevated levels of ketone bodies in the blood decrease the blood's pH, leading to DKA. On presentation at hospital, the patient in DKA is typically dehydrated, and breathing rapidly and deeply. Abdominal pain is common and may be severe. The level of consciousness is typically normal until late in the process, when lethargy may progress to coma. Ketoacidosis can easily become severe enough to cause hypotension, shock, and death. Urine analysis will reveal significant levels of ketone bodies (which have exceeded their renal threshold blood levels to appear in the urine, often before other overt symptoms). Prompt, proper treatment usually results in full recovery, though death can result from inadequate or delayed treatment, or from complications (e.g., brain edema). Ketoacidosis is much more common in type 1 diabetes than type 2.
As impaired fasting glucose is considered a precursor condition for type 2 diabetes, it shares the same environmental and genetic risk factors.
Too little insulin over time can cause tissue starvation (as glucose can't reach the brain or body). In combination with dehydration, fasting, infection, or other body stresses, this can turn over a few hours into diabetic ketoacidosis, a medical emergency with a high fatality rate, that cannot be treated at home. Many undiagnosed diabetic cats first come to the vet in this state, since they haven't been receiving insulin. Symptoms include lethargy, acetone or fruity smell on breath, shortness of breath, high blood sugar, huge thirst drive. Emergency care includes fluid therapy, insulin, management of presenting symptoms and 24-hour hospitalization.
Prediabetes typically has no distinct signs or symptoms except the sole sign of high blood sugar. Patients should monitor for signs and symptoms of type 2 diabetes mellitus. These include the following:
- Constant hunger
- Unexplained weight loss
- Weight gain
- Flu-like symptoms, including weakness and fatigue
- Blurred vision
- Slow healing of cuts or bruises
- Tingling or loss of feeling in hands or feet
- Recurring gum or skin infections
- Recurring vaginal or bladder infections
- A high BMI (Body Mass Index) result
Possible causes include:
- Neoplasm
- Pancreatic cancer
- Polycystic ovary syndrome (PCOS)
- Trans fats
"Common symptoms of NDM includes:"
- Thirst and Frequent Urination
An excessive thirst (also known as polydipsia) and increased urination (also known as polyuria) are common signs of diabetes. An individual with diabetes, have accumulated blood glucose. Their kidneys are working overtime to filter and uptake excess sugar. However, their kidneys cannot keep up, excess sugar is excreted into their urine, and this drag along fluids from the diabetic's tissues. This may lead to more frequent urination and lead to dehydration. As a diabetic individual drinks more fluids to satisfy their thirst, he or she urinates even more.
- Dehydration
Effected areas of the body are the eyes, mouth, kidneys, heart, and pancreas. Other symptoms of dehydration includes headache, thirst and dry mouth, dizziness, tiredness, and dark colored urine. In severe cases of dehydration in diabetics, low blood pressure, sunken eyes, a weak pulse or rapid heart beat, feeling confused or fatigue. Dehydration and high blood glucose for extended period of time, the diabetic's kidney would try to filter the blood of access glucose and excrete this as urine. As the kidneys are filtering the blood, water is being removed from the blood and would need to be replaced. This leads to an increased thirst when the blood glucose is elevated in a diabetic individual. Water is needed to re-hydrate the body. Therefore, the body would take available from other parts of the body, such as saliva, tears, and from cells of the body. If access water is not available, the body would not be able to pass excess glucose out of the blood by urine and can lead to further dehydration.
"Severe symptoms of NDM (Deficiency of insulin):"
- Ketoacidosis
Is a diabetic complication that occurs when the body produces high levels of acid in the blood (ketones). This effects the pancreas, fat cells, and kidneys. This condition occurs when the body cannot produce enough insulin. In the absence or lack of insulin, the body of an diabetic individual will break down fat as fuel. This process produces a buildup of acids in the bloodstream known as ketones, in which leads to ketoacidosis if left untreated. The symptoms of ketoacidosis develop rapidly or within 24 hours. Symptoms of ketoacidosis are excessive thirst, frequent urination, nausea or vomiting, stomach pain, tiredness, shortness or fruity smell on breath and confusion.
- Intrauterine Growth Restriction
A condition in which the unborn baby is smaller than he or she should be, due to the fact he or she not growing at a normal rate in the womb. Delayed growth puts the baby at risk of certain problems during pregnancy, delivery, and after birth. The problems are as follows: baby's birth weight is 90% less than normal weight, difficulty handling vaginal delivery, decreased oxygen levels, hypoglycemia (low blood glucose), low resistance to infection, low Apgar scores (a test given after birth to test the baby's physical condition and evaluate if special medical care is needed), Meconium aspiration (inhaling of stools passed while in the uterus) which causes breathing issues, irregular body temperature and high red blood cell count.
- Hyperglycemia
A condition characterized as high blood glucose, which occurs when the body has too little insulin or when the body cannot use insulin properly. Hyperglycemia affects the pancreas, kidneys, and body's tissues. Characterization of hyperglycemia is high blood glucose, high levels of sugar in the urine, frequent urination and increase thirst.
- Hypoglycemia
A condition characterized an extremely low blood glucose, usually less than 70 mg/dL. Areas of the body that are affected, pancreas, kidneys, and mental state.
These depend on poorly understood variations in individual biology and consequently may not be found with all people diagnosed with insulin resistance.
- Increased hunger
- Lethargy (tiredness)
- Brain fogginess and inability to focus
- High blood sugar
- Weight gain, fat storage, difficulty losing weight – for most people, excess weight is from high subcutaneous fat storage; the fat in IR is generally stored in and around abdominal organs in both males and females; it is currently suspected that hormones produced in that fat are a precipitating cause of insulin resistance
- Increased blood cholesterol levels
- Increased blood pressure; many people with hypertension are either diabetic or pre-diabetic and have elevated insulin levels due to insulin resistance; one of insulin's effects is to control arterial wall tension throughout the body
Impaired glucose tolerance (IGT) is a pre-diabetic state of dysglycemia, that is associated with insulin resistance and increased risk of cardiovascular pathology. IGT may precede type 2 diabetes mellitus by many years. IGT is also a risk factor for mortality.
Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to the hormone insulin. The body produces insulin when glucose starts to be released into the bloodstream from the digestion of carbohydrates in the diet. Normally this insulin response triggers glucose being taken into body cells, to be used for energy, and inhibits the body from using fat for energy. The concentration of glucose in the blood decreases as a result, staying within the normal range even when a large amount of carbohydrates is consumed. When the body produces insulin under conditions of insulin resistance, the cells are resistant to the insulin and are unable to use it as effectively, leading to high blood sugar. Beta cells in the pancreas subsequently increase their production of insulin, further contributing to a high blood insulin level. This often remains undetected and can contribute to the development of type 2 diabetes or latent autoimmune diabetes of adults. Although this type of chronic insulin resistance is harmful, during acute illness it is actually a well-evolved protective mechanism. Recent investigations have revealed that insulin resistance helps to conserve the brain's glucose supply by preventing muscles from taking up excessive glucose. In theory, insulin resistance should even be strengthened under harsh metabolic conditions such as pregnancy, during which the expanding fetal brain demands more glucose.
People who develop type 2 diabetes usually pass through earlier stages of insulin resistance and prediabetes, although those often go undiagnosed. Insulin resistance is a syndrome (a set of signs and symptoms) resulting from reduced insulin activity; it is also part of a larger constellation of symptoms called the metabolic syndrome.
Insulin resistance may also develop in patients who have recently experienced abdominal or bariatric procedures. This acute form of insulin resistance that may result post-operatively tends to increase over the short term, with sensitivity to insulin typically returning to patients after about five days.
According to the criteria of the World Health Organization and the American Diabetes Association, impaired glucose tolerance is defined as:
- two-hour glucose levels of 140 to 199 mg per dL (7.8 to 11.0 mmol/l) on the 75-g oral glucose tolerance test. A patient is said to be under the condition of IGT when he/she has an intermediately raised glucose level after 2 hours, but less than the level that would qualify for type 2 diabetes mellitus. The fasting glucose may be either normal or mildly elevated.
From 10 to 15 percent of adults in the United States have impaired glucose tolerance or impaired fasting glucose.
Impaired glucose tolerance (IGT) is a pre-diabetic state of hyperglycemia that is associated with insulin resistance and increased risk of cardiovascular pathology. IGT may precede type 2 diabetes mellitus by many years. IGT is also a risk factor for mortality.
The clinical manifestation is similar to neurogenic diabetes insipidus, presenting with excessive thirst and excretion of a large amount of dilute urine. Dehydration is common, and incontinence can occur secondary to chronic bladder distension. On investigation, there will be an increased plasma osmolarity and decreased urine osmolarity. As pituitary function is normal, ADH levels are likely to be abnormal or raised. Polyuria will continue as long as the patient is able to drink. If the patient is unable to drink and is still unable to concentrate the urine, then hypernatremia will ensue with its neurologic symptoms.
Nephrogenic diabetes insipidus (also known as renal diabetes insipidus) is a form of diabetes insipidus primarily due to pathology of the kidney. This is in contrast to central/neurogenic diabetes insipidus, which is caused by insufficient levels of antidiuretic hormone (ADH, that is, arginine vasopressin or AVP). Nephrogenic diabetes insipidus is caused by an improper response of the kidney to ADH, leading to a decrease in the ability of the kidney to concentrate the urine by removing free water.