Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cats will generally show a gradual onset of the disease over a few weeks or months, and it may escape notice for even longer.
The first outward symptoms are a sudden weight loss (or occasionally gain), accompanied by excessive drinking and urination; for example, cats can appear to develop an obsession with water and lurk around faucets or water bowls. Appetite is suddenly either ravenous (up to three-times normal) or absent. These symptoms arise from the body being unable to use glucose as an energy source.
A fasting glucose blood test will normally be suggestive of diabetes at this point. The same home blood test monitors used in humans are used on cats, usually by obtaining blood from the ear edges or paw pads. As the disease progresses, ketone bodies will be present in the urine, which can be detected with the same urine strips as in humans.
In the final stages, the cat starts wasting and the body will breaking down its own fat and muscle to survive. Lethargy or limpness, and acetone-smelling breath are acute symptoms of ketoacidosis and/or dehydration and is a medical emergency.
Untreated, diabetes leads to coma and then death.
Too little insulin over time can cause tissue starvation (as glucose can't reach the brain or body). In combination with dehydration, fasting, infection, or other body stresses, this can turn over a few hours into diabetic ketoacidosis, a medical emergency with a high fatality rate, that cannot be treated at home. Many undiagnosed diabetic cats first come to the vet in this state, since they haven't been receiving insulin. Symptoms include lethargy, acetone or fruity smell on breath, shortness of breath, high blood sugar, huge thirst drive. Emergency care includes fluid therapy, insulin, management of presenting symptoms and 24-hour hospitalization.
The main symptoms which occur in nearly all dogs with diabetes mellitus are:
- excessive water consumption, known as polydipsia,
- frequent and/or excessive urination, known as polyuria, often requiring the dog to be let outside to urinate during the night,
- greater than average appetite, known as polyphagia,
- weight loss.
Sometimes, the first sign of diabetes noticed by the owner may be that their dog either has become blind (due to the formation of cataracts in the eyes), or has vomiting, anorexia, lethargy and weakness (due to ketoacidosis).
Diabetes mellitus is a disease in which the beta cells of the endocrine pancreas either stop producing insulin or can no longer produce it in enough quantity for the body's needs. The condition is commonly divided into two types, depending on the origin of the condition: Type 1 diabetes, sometimes called "juvenile diabetes", is caused by destruction of the beta cells of the pancreas. The condition is also referred to as insulin-dependent diabetes, meaning exogenous insulin injections must replace the insulin the pancreas is no longer capable of producing for the body's needs. Dogs can have insulin-dependent, or Type 1, diabetes; research finds no Type 2 diabetes in dogs. Because of this, there is no possibility the permanently damaged pancreatic beta cells could re-activate to engender a remission as may be possible with some feline diabetes cases, where the primary type of diabetes is Type 2. There is another less common form of diabetes, diabetes insipidus, which is a condition of insufficient antidiuretic hormone or resistance to it.
This most common form of diabetes affects approximately 0.34% of dogs. The condition is treatable and need not shorten the animal's life span or interfere with quality of life. If left untreated, the condition can lead to cataracts, increasing weakness in the legs (neuropathy), malnutrition, ketoacidosis, dehydration, and death. Diabetes mainly affects middle-age and older dogs, but there are juvenile cases. The typical canine diabetes patient is middle-age, female, and overweight at diagnosis.
The number of dogs diagnosed with diabetes mellitus has increased three-fold in thirty years. In survival rates from almost the same time, only 50% survived the first 60 days after diagnosis and went on to be successfully treated at home. Currently, diabetic dogs receiving treatment have the same expected lifespan as non-diabetic dogs of the same age and gender.
Low blood sugar is common in persons with type 1 and type 2 DM. Most cases are mild and are not considered medical emergencies. Effects can range from feelings of unease, sweating, trembling, and increased appetite in mild cases to more serious issues such as confusion, changes in behavior such as aggressiveness, seizures, unconsciousness, and (rarely) permanent brain damage or death in severe cases. Moderate hypoglycemia may easily be mistaken for drunkenness; rapid breathing and sweating, cold, pale skin are characteristic of hypoglycemia but not definitive. Mild to moderate cases are self-treated by eating or drinking something high in sugar. Severe cases can lead to unconsciousness and must be treated with intravenous glucose or injections with glucagon.
People (usually with type 1 DM) may also experience episodes of diabetic ketoacidosis, a metabolic disturbance characterized by nausea, vomiting and abdominal pain, the smell of acetone on the breath, deep breathing known as Kussmaul breathing, and in severe cases a decreased level of consciousness.
A rare but equally severe possibility is hyperosmolar hyperglycemic state, which is more common in type 2 DM and is mainly the result of dehydration.
The classic symptoms of untreated diabetes are weight loss, polyuria (increased urination), polydipsia (increased thirst), and polyphagia (increased hunger). Symptoms may develop rapidly (weeks or months) in type 1 DM, while they usually develop much more slowly and may be subtle or absent in type 2 DM.
Several other signs and symptoms can mark the onset of diabetes although they are not specific to the disease. In addition to the known ones above, they include blurry vision, headache, fatigue, slow healing of cuts, and itchy skin. Prolonged high blood glucose can cause glucose absorption in the lens of the eye, which leads to changes in its shape, resulting in vision changes. A number of skin rashes that can occur in diabetes are collectively known as diabetic dermadromes.
Obesity in pets occurs when excessive adipose tissue accumulates in the body, and is generally defined as occurring when an animal's body weight is at least 20% greater than its optimal body weight. Obesity is associated with metabolic and hormonal changes.
Weight gain will occur when an animal is in a positive energy balance, meaning energy provided as calories in the diet exceed calories expended. Evidence suggests that middle-aged cats and dogs, especially those between the ages of 5 and 10, may be at an increased risk of obesity. This is supported by studies showing that as cats age from 2 years to approximately 11.5 years of age their energy requirements decreased. Weight gain will occur if calories from the diet do not decrease with the animal’s energy requirements.
Obesity in pets is usually due to excessive food intake or lack of physical exercise. Owners may view food as a way to reward and treat their pets, which contributes to overfeeding. Pets confined to a house or small yard which are not regularly exercised are more prone to obesity.
The risk of obesity in dogs (but not in cats) is related to whether or not their owners are obese.
In cats, neutering increases the risk of obesity, partly because the alteration in sex hormones after neutering lowers the basal metabolic rate, and partly because neutered cats have a reduced inclination to roam compared to non-neutered cats.
If hyponatremia (low sodium) and hyperkalemia (high potassium) are severe, the resulting hypovolemia, prerenal azotemia, and cardiac arrhythmias may result in an Addisonian crisis. In severe cases, the patient may be presented in shock and moribund. Addisonian crisis must be differentiated from other life-threatening disorders such as diabetic ketoacidosis, necrotizing pancreatitis, and septic peritonitis.
The most common clinical manifestations are related to mental status and gastrointestinal function; they include lethargy, anorexia, vomiting, weight loss, and weakness. Additional findings may include dehydration, bradycardia, weak femoral pulses, and abdominal pain. Polyuria and polydipsia, diarrhea, and shivering are occasionally reported.
Symptoms of hypoadrenocorticism can include vomiting, diarrhea, lethargy, lack of appetite, tremors or shaking, muscle weakness, low body temperature, collapse, low heart rate, and pain in the hind quarters. Hypoglycemia can also be present, and initially may be confused with seizure disorders, insulin-secreting pancreatic tumor (insulinoma), food poisoning, parvovirus enteritis, gastric volvulus, spinal or joint problems, earning hypoadrenocorticism the nicknames of "the Great Mimic" and "the Great Imitator". It is possible not to see any signs of the disease until 90% of the adrenal cortex is no longer functioning.
Loss of Pancreatic enzymes leads to maldigestions and malabsorption which may lead to:
- steatorrhea
- weight loss
- fatigue
- flatulence and abdominal distention (bacterial fermentation of unabsorbed food)
- edema (hypoalbuminemia)
- anemia (Vitamin B12, iron, folate deficiency)
- bleeding disorders (Vitamin K malabsorption)
- Metabolic bone disease (Vitamin D deficiency)
- neurologic manifestation
- hypocalcemia
In humans, the most common causes of EPI are chronic pancreatitis and cystic fibrosis, the former a longstanding inflammation of the pancreas altering the organ's normal structure and function that can arise as a result of malnutrition, heredity, or (in the western world especially), behaviour (alcohol use, smoking), and the latter a recessive hereditary disease most common in Europeans and Ashkenazi Jews where the molecular culprit is an altered, "CFTR"-encoded chloride channel. In children, another common cause is Shwachman-Bodian-Diamond syndrome, a rare autosomal recessive genetic disorder resulting from mutation in the SBDS gene.
The clinical signs can vary from mild gastrointestinal upset to death, with most dogs presenting with common gastrointestinal signs of upset, such as vomiting, anorexia, painful abdomen, hunched posture, diarrhea, fever, dehydration, and lack of energy, with vomiting being the most common symptom. These signs are not specific just for pancreatitis and may be associated with other gastrointestinal diseases and conditions.
Acute pancreatitis can trigger a build-up of fluid, particularly in abdominal and thoracic (chest) areas, acute renal failure, and cause inflammation in arteries and veins. The inflammation triggers the body's clotting factors, possibly depleting them to the point of spontaneous bleeding. It is this form which can be fatal in animals and in humans.
Chronic pancreatitis can be present even though there are no clinical signs of the disease.
Pancreatitis can result in exocrine pancreatic insufficiency, if the organ's acinar cells are permanently damaged; the pancreatic enzymes then need replacement with pancrelipase or similar products. The damage can also extend into the endocrine portion of the pancreas, resulting in diabetes mellitus. Whether the diabetes is transient (temporary) or permanent depends on the severity of the damage to the endocrine pancreas beta cells.
Canine pancreatitis is inflammation of the pancreas that can occur in two very different forms. Acute pancreatitis is sudden while chronic pancreatitis is characterized by recurring or persistent form of pancreatic inflammation. Cases of both can be considered mild or severe.
Vomiting and diarrhea are often the first clinical signs of grape or raisin toxicity. They often develop within a few hours of ingestion. Pieces of grapes or raisins may be present in the vomitus or stool. Further symptoms include weakness, not eating, increased drinking, and abdominal pain. Acute renal failure develops within 48 hours of ingestion. A blood test may reveal increases in blood urea nitrogen (BUN), creatinine, phosphorus, and calcium.
Haemochromatosis is in its manifestations, "i.e.", often presenting with signs or symptoms suggestive of other diagnoses that affect specific organ systems. Many of the signs and symptoms below are uncommon and most patients with the hereditary form of haemochromatosis do not show any overt signs of disease nor do they suffer premature morbidity.
The classic triad of cirrhosis, bronze skin and diabetes is not as common any more because of earlier diagnosis.
The more common clinical manifestations include:
- Fatigue
- Malaise
- Joint and bone pain
- Liver cirrhosis (with an increased risk of hepatocellular carcinoma) Liver disease is always preceded by evidence of liver dysfunction including elevated serum enzymes specific to the liver, clubbing of the fingers, leuconychia, asterixis, hepatomegaly, palmar erythema and spider naevi. Cirrhosis can also present with jaundice (yellowing of the skin) and ascites.
- Insulin resistance (often patients have already been diagnosed with diabetes mellitus type 2) due to pancreatic damage from iron deposition
- Erectile dysfunction and hypogonadism, resulting in decreased libido
- Congestive heart failure, abnormal heart rhythms or pericarditis
- Arthritis of the hands (especially the second and third MCP joints), but also the knee and shoulder joints
- Damage to the adrenal gland, leading to adrenal insufficiency
Less common findings including:
- Deafness
- Dyskinesias, including Parkinsonian symptoms
- Dysfunction of certain endocrine organs:
- Parathyroid gland (leading to hypocalcaemia)
- Pituitary gland
- More commonly a slate-grey or less commonly darkish colour to the skin (see pigmentation, hence its name "diabetes bronze" when it was first described by Armand Trousseau in 1865)
- An increased susceptibility to certain infectious diseases caused by siderophilic microorganisms:
- "Vibrio vulnificus" infections from eating seafood or wound infection
- "Listeria monocytogenes"
- "Yersinia enterocolica"
- "Salmonella enterica" (serotype Typhymurium)
- "Klebsiella pneumoniae"
- "Escherichia coli"
- "Rhizopus arrhizus"
- "Mucor" species
Males are usually diagnosed after their forties and fifties, and women several decades later, owing to regular iron loss through menstruation (which ceases in menopause). The severity of clinical disease in the hereditary form varies considerably. There is evidence suggesting that hereditary haemochromatosis patients affected with other liver ailments such as hepatitis or alcoholic liver disease suffer worse liver disease than those with either condition alone. There are also juvenile forms of hereditary haemochromatosis that present in childhood with the same consequences of iron overload.
The consumption of grapes and raisins presents a potential health threat to dogs. Their toxicity to dogs can cause the animal to develop acute kidney injury (the sudden development of kidney failure) with anuria (a lack of urine production). The phenomenon was first identified by the Animal Poison Control Center (APCC), run by the American Society for the Prevention of Cruelty to Animals (ASPCA). Approximately 140 cases were seen by the APCC in the one year from April 2003 to April 2004, with 50 developing symptoms and seven dying.
It is not clear that the observed cases of renal failure following ingestion are due to grapes only. Clinical findings suggest raisin and grape ingestion can be fatal, but the mechanism of toxicity is still considered unknown.
Iron is stored in the liver, the pancreas and the heart. Long-term effects of haemochromatosis on these organs can be very serious, even fatal when untreated. For example, similar to alcoholism, haemochromatosis can cause cirrhosis of the liver. The liver is a primary storage area for iron and will naturally accumulate excess iron. Over time the liver is likely to be damaged by iron overload. Cirrhosis itself may lead to additional and more serious complications, including bleeding from dilated veins in the esophagus (esophageal varices) and stomach (gastric varices) and severe fluid retention in the abdomen (ascites). Toxins may accumulate in the blood and eventually affect mental functioning. This can lead to confusion or even coma (hepatic encephalopathy).
Liver cancer: Cirrhosis and haemochromatosis together will increase the risk of liver cancer. (Nearly one-third of people with haemochromatosis and cirrhosis eventually develop liver cancer.)
Diabetes: The pancreas which also stores iron is very important in the body’s mechanisms for sugar metabolism. Diabetes affects the way the body uses blood sugar (glucose). Diabetes is in turn the leading cause of new blindness in adults and may be involved in kidney failure and cardiovascular disease.
Congestive heart failure: If excess iron in the heart interferes with the its ability to circulate enough blood, a number of problems can occur, even death. The condition may be reversible when haemochromatosis is treated and excess iron stores reduced.
Heart arrhythmias: Arrhythmia or abnormal heart rhythms can cause heart palpitations, chest pain and light-headedness and are occasionally life-threatening. This condition can often be reversed with treatment for haemochromatosis.
Pigment changes: Bronze or grey coloration of the skin is caused primarily by increased melanin deposition, with iron deposition playing a lesser role.
Usually symptoms of cerebellar hypoplasia can be seen immediately at birth in cats, but sometimes can take two months or so to become apparent in dogs. Cerebellar hypoplasia causes jerky movements, tremors and generally uncoordinated motion. The animal often falls down and has trouble walking. Tremors increase when the animal is excited and subside when at ease.
Limber tail syndrome, or acute caudal myopathy, is a disorder of the muscles in the tail, usually affecting working dogs.
It is an injury occurring mostly in sporting or working dogs such as English Pointers, English Setters, Foxhounds, Beagles, and Labrador Retrievers. Limber tail syndrome is also known as swimmer's tail, cold water tail, broken tail, dead tail, "happy tail" or broken wag.
With rest, the tail returns to normal within a few days. Pain relief, such as a nonsteroidal anti-inflammatory drug may be administered. The symptoms may reoccur.
Scotty Cramp is a disease in Scottish Terriers causing spasms and hyperflexion and hyperextension of the legs. It is caused by a disorder in serotonin metabolism that causes a deficiency of available serotonin. It is inherited as an autosomal recessive trait.
Scotty Cramp occurs in puppies and young dogs. Symptoms present after exercise or excitement and last a few minutes. A goose-stepping gait and arched spine are often seen, and the dogs may turn somersaults as it runs. The symptoms usually resolve after ten minutes, but they may repeat several times in a day. If the diagnosis is unsure, a dose of methysergide can be given. In affected dogs, this will block serotonin and increase the frequence and severity of the symptoms. Diazepam or acepromazine is used to control the symptoms of Scotty Cramp. Vitamin E may also be of some benefit. Because Scotty Cramp is inherited, affected dogs and their parents and siblings should not be bred.
Cerebellar hypoplasia is a disorder found in cats and dogs in which the cerebellum is not completely mature at birth.
Affected male and carrier female dogs generally begin to show signs of the disease at two to three months of age, with proteinuria. By three to four months of age, symptoms include for affected male dogs: bodily wasting and loss of weight, proteinuria & hypoalbuminemia. Past nine months of age, hypercholesterolemia may be seen. In the final stages of the disease, at around 15 months of age for affected males, symptoms are reported as being renal failure, hearing loss and death. Since the condition is genetically dominant, diagnosis would also include analysis of the health of the sire and dam of the suspected affected progeny if available.
Dogs with limb osteosarcoma typically show lameness and swelling at the affected site. For other sites, dogs may show difficulty to open their mouth (if jaw bone cancer), nasal discharge (if nasal cavity bone cancer) or neurological signs (if spine bone cancer).