Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Developmental toxicity is any structural or functional alteration, reversible or irreversible, which interferes with homeostasis, normal growth, differentiation, development or behavior, and which is caused by environmental insult (including drugs, lifestyle factors such as alcohol, diet, and environmental toxic chemicals or physical factors). It is the study of adverse effects on the development of the organism resulting from exposure to toxic agents before conception (either parent), during prenatal development, or post-natally until puberty. The substance that causes developmental toxicity from embryonic stage to birth is called teratogens. The effect of the developmental toxicants depends on the type of substance, dose and duration and time of exposure.
Certain Pathogens are also included since the toxins they secrete are known to cause adverse effects on the development of the organism when the mother or fetus is infected. Developmental toxicology is a science studying adverse developmental outcomes. This term has widely replaced the early term for the study of primarily structural congenital abnormalities, teratology, to enable inclusion of a more diverse spectrum of congenital disorders. Typical factors causing developmental toxicity are radiation, infections (e.g. rubella), maternal metabolic imbalances (e.g. alcoholism, diabetes, folic acid deficiency), drugs (e.g. anticancer drugs, tetracyclines, many hormones, thalidomide), and environmental chemicals (e.g. mercury, lead, dioxins, PBDEs, HBCD, tobacco smoke). The first-trimester exposure is considered the most potential for developmental toxicity.
Once fertilization has taken place, the toxicants in the environment can pass through the mother to the developing embryo or fetus across the placental barrier. The fetus is at greatest risk during the first 14th to 60th day of the pregnancy when the major organs are being formed. However, depending on the type of toxicant and amount of exposure, a fetus can be exposed toxicant at any time during pregnancy. For example, exposure to a particular toxicant at one time in the pregnancy may result in organ damage and at another time in the pregnancy could cause death of the fetus and miscarriage. There are a number of chemicals, biological agents (such as bacteria and viruses), and physical agents (such as radiation) used in a variety of workplaces that are known to cause developmental disorders. Developmental disorders can include a wide range of physical abnormalities, such as bone or organ deformities, or behavioral and learning problems, such as a mental retardation. Exposures to some chemicals during pregnancy can lead to the development of cancer later in the life of the child and are called transgenerational carcinogens. Exposure to toxicants during the second and the third trimester of a pregnancy can lead to slow fetal grown and result in low birth weight.
Developmental toxicity is the alterations of the developmental processes (organogenesis, morphogenesis) rather than functional alterations of already developed organs. The effects of the toxicants depends on the dose, threshold and duration. The effects of toxicity are:
1. Minor structural deformities - e.g. Anticonvulsant drugs, Warfarin, Retinoic Acid derivatives
2. Major structural deformities - e.g. DES (diethylstilbestrol), cigarette smoking
3. Growth Retardation - e.g. Alcohol, Polychlorinated Biphenyls
4. Functional alterations - e.g. Retinoic Acid derivatives, Polychlorinated Biphenyls, Phenobarbitol, Lead
5. Death- e.g. Rubella, ACE inhibitors
The symptoms of organophosphate poisoning include muscle weakness, fatigue, muscle cramps, fasciculation, and paralysis. Other symptoms include hypertension, and hypoglycemia.
Overstimulation of nicotinic acetylcholine receptors in the central nervous system, due to accumulation of ACh, results in anxiety, headache, convulsions, ataxia, depression of respiration and circulation, tremor, general weakness, and potentially coma. When there is expression of muscarinic overstimulation due to excess acetylcholine at muscarinic acetylcholine receptors symptoms of visual disturbances, tightness in chest, wheezing due to bronchoconstriction, increased bronchial secretions, increased salivation, lacrimation, sweating, peristalsis, and urination can occur.
The effects of organophosphate poisoning on muscarinic receptors are recalled using the mnemonic SLUDGEM (salivation, lacrimation, urination, defecation, gastrointestinal motility, emesis, miosis) An additional mnemonic is MUDDLES: miosis, urination, diarrhea, diaphoresis, lacrimation, excitation, and salivation.
The onset and severity of symptoms, whether acute or chronic, depends upon the specific chemical, the route of exposure (skin, lungs, or GI tract), the dose, and the individuals ability to degrade the compound, which the PON1 enzyme level will affect.
Neurotoxic effects have also been linked to poisoning with OP pesticides causing four neurotoxic effects in humans: cholinergic syndrome, intermediate syndrome, organophosphate-induced delayed polyneuropathy (OPIDP), and chronic organophosphate-induced neuropsychiatric disorder (COPIND). These syndromes result after acute and chronic exposure to OP pesticides.
Cholinergic syndrome occurs in acute poisonings with OP pesticides and is directly related to levels of AChE activity. Symptoms include miosis, sweating, lacrimation, gastrointestinal symptoms, respiratory difficulties, shortness of breath, slowed heart rate, cyanosis, vomiting, diarrhea, trouble sleeping, as well as other symptoms. Along with these central effects can be seen and finally seizures, convulsions, coma, respiratory failure. If the person survives the first day of poisoning personality changes can occur, aggressive events, psychotic episodes, disturbances and deficits in memory and attention, as well as other delayed effects. When death occurs, it is most commonly due to respiratory failure from the combination of central and peripheral effects, paralysis of respiratory muscles and depression of the brain respiratory center. For people afflicted with cholinergic syndrome, atropine sulfate combined with an oxime is used to combat the effects of the acute OP poisoning. Diazepam is sometimes also administered in combination with the atropine and oximes.
The intermediate syndrome (IMS) appears in the interval between the end of the cholinergic crisis and the onset of OPIDP. Symptoms associated with IMS manifest within 24–96 hours after exposure. The exact etiology, incidence, and risk factors associated with IMS are not clearly understood, but IMS is recognized as a disorder of neuromuscular junctions. IMS occurs when a person has a prolonged and severe inhibition of AChE and has been linked to specific OP pesticides such as methylparathion, dichlorvos, and parathion. Patients present with increasing weakness of facial, neck flexor and respiratory muscles.
OPIDP occurs in a small percentage of cases, roughly two weeks after exposure, where temporary paralysis occurs. This loss of function and ataxia of peripheral nerves and spinal cord is the phenomenon of OPIDP. Once the symptoms begin with shooting pains in both legs, the symptoms continue to worsen for 3–6 months. In the most severe cases quadriplegia has been observed. Treatment only affects sensory nerves, not motor neurons which may permanently lose function. The aging and phosphorylation of more than 70% of functional NTE in peripheral nerves is one of the processes involved in OPIDP. Standard treatments for OP poisoning are ineffective for OPIDP.
COPIND occurs without cholinergic symptoms and is not dependent on AChE inhibition. COPIND appears with a delay and is long lasting. Symptoms associated with COPIND include cognitive deficit, mood change, autonomic dysfunction, peripheral neuropathy, and extrapyramidal symptoms. The underlying mechanisms of COPIND have not been determined, but it is hypothesized that withdrawal of OP pesticides after chronic exposure or acute exposure could be a factor.
Chronic poisoning usually presents with symptoms affecting multiple systems, but is associated with three main types of symptoms: gastrointestinal, neuromuscular, and neurological. Central nervous system and neuromuscular symptoms usually result from intense exposure, while gastrointestinal symptoms usually result from exposure over longer periods. Signs of chronic exposure include loss of short-term memory or concentration, depression, nausea, abdominal pain, loss of coordination, and numbness and tingling in the extremities. Fatigue, problems with sleep, headaches, stupor, slurred speech, and anemia are also found in chronic lead poisoning. A "lead hue" of the skin with pallor and/or lividity is another feature. A blue line along the gum with bluish black edging to the teeth, known as a Burton line, is another indication of chronic lead poisoning. Children with chronic poisoning may refuse to play or may have hyperkinetic or aggressive behavior disorders. Visual disturbance may present with gradually progressing blurred vision as a result of central scotoma, caused by toxic optic neuritis.
A woman who has elevated blood lead levels during pregnancy is at greater risk of a prematurely birth or with a low birth weight. Children are more at risk for lead poisoning because their smaller bodies are in a continuous state of growth and development. Lead is absorbed at a faster rate compared to adults, which causes more physical harm than to older people. Furthermore, children, especially as they are learning to crawl and walk, are constantly on the floor and therefore more prone to ingesting and inhaling dust that is contaminated with lead.
The classic signs and symptoms in children are loss of appetite, abdominal pain, vomiting, weight loss, constipation, anemia, kidney failure, irritability, lethargy, learning disabilities, and behavioral problems. Slow development of normal childhood behaviors, such as talking and use of words, and permanent intellectual disability are both commonly seen. Although less common, it is possible for fingernails to develop leukonychia striata if exposed to abnormally high lead concentrations.
Micro syndrome can be identified in people several ways, one of the most common is ocular problems or other physical traits that don't appear natural. It is especially easy to identify micro syndrome in infants and in younger children. Intellectual or developmental disabilities can seriously affect a patient in the way they think and move. So far according to studies all patients have had serious intellectual or developmental disabilities, and hypotonia is found in all the patients during infancy.
Tin poisoning refers to the toxic effects of tin and its compounds. Cases of poisoning from tin metal, its oxides, and its salts are "almost unknown"; on the other hand certain organotin compounds are almost as toxic as cyanide.
Health effects of pesticides may be acute or delayed in those who are exposed. A 2007 systematic review found that "most studies on non-Hodgkin lymphoma and leukemia showed positive associations with pesticide exposure" and thus concluded that cosmetic use of pesticides should be decreased. Strong evidence also exists for other negative outcomes from pesticide exposure including neurological problems, birth defects, fetal death, and neurodevelopmental disorder.
According to The Stockholm Convention on Persistent Organic Pollutants, 9 of the 12 most dangerous and persistent chemicals are pesticides.
Epidemic dropsy is a form of edema of extremities due to poisoning by "Argemone mexicana" (Mexican prickly poppy).
Epidemic dropsy is a clinical state resulting from use of edible oils adulterated with "Argemone mexicana" seed oil.
Sanguinarine and dihydrosanguinarine are two major toxic alkaloids of argemone oil, which cause widespread capillary dilatation, proliferation and increased capillary permeability. When mustard oil is adulterated deliberately (as in most cases) or accidentally with argemone oil, proteinuria (specifically loss of albumin) occurs, with a resultant edema as would occur in nephrotic syndrome.
Other major symptoms are pitting edema of extremities, headache, nausea, loose bowels, erythema, glaucoma and breathlessness.
Leakage of the protein-rich plasma component into the extracellular compartment leads to the formation of edema. The haemodynamic consequences of this vascular dilatation and permeability lead to a state of relative hypovolemia with a constant stimulus for fluid and salt conservation by the kidneys. Illness begins with gastroenteric symptoms followed by cutaneous erythema and pigmentation. Respiratory symptoms such as cough, shortness of breath and orthopnoea, progressing to frank right-sided congestive cardiac failure, are seen.
Mild to moderate anaemia, hypoproteinaemia, mild to moderate renal azotemia, retinal haemorrhages, and glaucoma are common manifestations. There is no specific therapy. Removal of the adulterated oil and symptomatic treatment of congestive cardiac failure and respiratory symptoms, along with administration of antioxidants and multivitamins, remain the mainstay of treatment.
Epidemic dropsy occurs as an epidemic in places where use of mustard oil, (from the seeds of Brassica "juncea" commonly known as Indian mustard ) as cooking medium is common.
The olfactory system is the system related to the sense of smell (olfaction). Many fish activities are dependent on olfaction, such as: mating, discriminating kin, avoiding predators, locating food, contaminant avoidance, imprinting and homing. These activities are referred to as “olfactory-mediated.” Impairment of the olfactory system threatens survival and has been used as an ecologically relevant sub-lethal toxicological endpoint for fish within studies. Olfactory information is received by sensory neurons, like the olfactory nerve, that are in a covered cavity separated from the aquatic environment by mucus. Since they are in almost direct contact with the surrounding environment, these neurons are vulnerable to environmental changes. Fish can detect natural chemical cues in aquatic environments at concentrations as low as parts per billion (ppb) or parts per trillion (ppt).
Studies have shown that exposures to metals, pesticides, or surfactants can disrupt fish olfaction, which can impact their survival and reproductive success. Many studies have indicated copper as a source of olfactory toxicity in fishes, among other common substances. Olfactory toxicity can occur by multiple, complex Modes of Toxic Action.
The signs and symptoms of paracetamol toxicity occur in three phases. The first phase begins within hours of overdose, and consists of nausea, vomiting, a pale appearance, and sweating. However, patients often have no specific symptoms or only mild symptoms in the first 24 hours of poisoning. Rarely, after massive overdoses, patients may develop symptoms of metabolic acidosis and coma early in the course of poisoning.
The second phase occurs between 24 h and 72 h following overdose and consists of signs of increasing liver damage. In general, damage occurs in liver cells as they metabolize the paracetamol. The individual may experience right upper quadrant abdominal pain. The increasing liver damage also changes biochemical markers of liver function; International normalized ratio (INR) and the liver transaminases ALT and AST rise to abnormal levels. Acute kidney failure may also occur during this phase, typically caused by either hepatorenal syndrome or multiple organ dysfunction syndrome. In some cases, acute kidney failure may be the primary clinical manifestation of toxicity. In these cases, it has been suggested that the toxic metabolite is produced more in the kidneys than in the liver.
The third phase follows at 3 to 5 days, and is marked by complications of massive liver necrosis leading to fulminant liver failure with complications of coagulation defects, low blood sugar, kidney failure, hepatic encephalopathy, brain swelling, sepsis, multiple organ failure, and death. If the third phase is survived, the liver necrosis runs its course, and liver and kidney function typically return to normal in a few weeks. The severity of paracetamol toxicity varies depending on the dose and whether appropriate treatment is received.
The brain effects are also variable. Seizures sometimes occur. Prediction of intellectual outcome in infancy is difficult. Various types of early intervention or equivalent programs can help a child reach full developmental potential.
The degree of pituitary deficiency is also variable, and ranges from normal function, to deficiency of both anterior and posterior hormones. It is often unclear if the hypopituitarism is due to a primary pituitary dysfunction or is secondary to a hypothalamic dysfunction. Hypopituitarism in this syndrome is most often manifested by growth hormone deficiency. If severe, it can lead to diagnosis in the first days of life by causing hypoglycemia, jaundice, and micropenis (if a boy). The cause of the jaundice is unknown, and an unusual aspect of it (compared to most neonatal jaundice) is that it can be largely a conjugated (direct) hyperbilirubinemia suggestive of obstructive liver disease. It typically resolves over several weeks once hormone replacement is begun. All of the pituitary hormones can be replaced, and this is the treatment for deficiencies. Septo-optic dysplasia is one of the most common forms of congenital growth hormone deficiency.
Micro syndrome also known as WARBM, and Warburg–Sjo–Fledelius syndrome, is a rare autosomal recessive genetic disorder characterized by microcephaly, microcornea, congenital cataract, intellectual or developmental disability, optic atrophy, and hypogenitalism.
Copper toxicity, also called copperiedus, refers to the consequences of an excess of copper in the body. Copperiedus can occur from eating acid foods cooked in uncoated copper cookware, or from exposure to excess copper in drinking water or other environmental sources.
Paracetamol poisoning, also known as acetaminophen poisoning, is caused by excessive use of the medication paracetamol (acetaminophen). Most people have few or non-specific symptoms in the first 24 hours following overdose. This may include feeling tired, abdominal pain, or nausea. This is typically followed by a couple of days without any symptoms after which yellowish skin, blood clotting problems, and confusion occurs. Additional complications may include kidney failure, pancreatitis, low blood sugar, and lactic acidosis. If death does not occur, people tend to recover fully over a couple of weeks. Without treatment some cases will resolve while others will result in death.
Paracetamol poisoning can occur accidentally or as an attempt to end one's life. Risk factors for toxicity include alcoholism, malnutrition, and the taking of certain other medications. Liver damage results not from paracetamol itself, but from one of its metabolites, "N"-acetyl-"p"-benzoquinone imine (NAPQI). NAPQI decreases the liver's glutathione and directly damages cells in the liver. Diagnosis is based on the blood level of paracetamol at specific times after the medication was taken. These values are often plotted on the Rumack-Matthew nomogram to determine level of concern.
Treatment may include activated charcoal if the person presents soon after the overdose. Attempting to force the person to vomit is not recommended. If there is a potential for toxicity, the antidote acetylcysteine is recommended. The medication is generally given for at least 24 hours. Psychiatric care may be required following recovery. A liver transplant may be required if damage to the liver becomes severe. The need for transplant is often based on low blood pH, high blood lactate, poor blood clotting, or significant hepatic encephalopathy. With early treatment liver failure is rare. Death occurs in about 0.1% of cases.
Paracetamol poisoning was first described in the 1960s. Rates of poisoning vary significantly between regions of the world. In the United States more than 100,000 cases occur a year. In the United Kingdom it is the medication responsible for the greatest number of overdoses. Young children are most commonly affected. In the United States and the United Kingdom paracetamol is the most common cause of acute liver failure.
Signs of ethylene glycol poisoning depend upon the time after ingestion. Symptoms usually follow a three-step progression, although poisoned individuals will not always develop each stage.
- Stage 1 (30 minutes to 12 hours) consists of neurological and gastrointestinal symptoms and looks similar to alcohol poisoning. Poisoned individuals may appear to be intoxicated, dizzy, lacking coordination of muscle movements, drooling, depressed, and have slurred speech, seizuring, abnormal eye movements, headaches, and confusion. Irritation to the stomach may cause nausea and vomiting. Also seen are excessive thirst and urination. Over time, the body metabolizes ethylene glycol into other toxins.
- Stage 2 (12 to 36 hours) where signs of "alcohol" poisoning appear to resolve, underlying severe internal damage is still occurring. An elevated heart rate, hyperventilation or increased breathing effort, and dehydration may start to develop, along with high blood pressure and metabolic acidosis. These symptoms are a result of accumulation of organic acids formed by the metabolism of ethylene glycol. Additionally low calcium concentrations in the blood, overactive muscle reflexes, muscle spasms, QT interval prolongation, and congestive heart failure may occur. If untreated, death most commonly occurs during this period.
- Stage 3 (24 to 72 hours) kidney failure is the result of ethylene glycol poisoning. In cats, this stage occurs 12–24 hours after getting into antifreeze; in dogs, at 36–72 hours after getting into antifreeze. During this stage, severe kidney failure is developing secondary to calcium oxalate crystals forming in the kidneys. Severe lethargy, coma, depression, vomiting, seizures, drooling, and inappetance may be seen. Other symptoms include acute tubular necrosis, red blood cells in the urine, excess proteins in the urine, lower back pain, decreased or absent production of urine, elevated blood concentration of potassium, and acute kidney failure. If kidney failure occurs it is typically reversible, although weeks or months of supportive care including hemodialysis may be required before kidney function returns.
In addition to the symptoms associated with immunodeficiency, such as depletion of T-cells, decline of lymphocyte activity, and an abrupt proliferation of both benign and opportunistic infections — PNP-deficiency is often characterized by the development of autoimmune disorders. lupus erythematosus, autoimmune hemolytic anemia, and idiopathic thrombocytopenic purpura have been reported with PNP-deficiency.
Neurological symptoms, such as developmental decline, hypotonia, and mental retardation have also been reported.
ICD-9-CM code 985.8 "Toxic effect of other specified metals" includes acute & chronic copper poisoning (or other toxic effect) whether intentional, accidental, industrial etc.
- In addition, it includes poisoning and toxic effects of other metals including tin, selenium nickel, iron, heavy metals, thallium, silver, lithium, cobalt, aluminum and bismuth. Some poisonings, e.g. zinc phosphide, would/could also be included as well as under 989.4 Poisoning due to other pesticides, etc.
- Excluded are toxic effects of mercury, arsenic, manganese, beryllium, antimony, cadmium, and chromium.
Various pesticides such as rodenticides may cause secondary poisoning. Some pesticides require multiple feedings spanning several days; this increases the time a target organism continues to move after ingestion, raising the risk of secondary poisoning of a predator.
Ethylene glycol poisoning is poisoning caused by drinking ethylene glycol. Early symptoms include intoxication, vomiting and abdominal pain. Later symptoms may include a decreased level of consciousness, headache, and seizures. Long term outcomes may include kidney failure and brain damage. Toxicity and death may occur even after drinking a small amount.
Ethylene glycol is a colorless, odorless, sweet liquid, commonly found in antifreeze. It may be drunk accidentally or purposefully in an attempt to cause death. When broken down by the body it results in glycolic acid and oxalic acid which cause most of the toxicity. The diagnosis may be suspected when calcium oxalate crystals are seen in the urine or when acidosis or an increased osmol gap is present in the blood. Diagnosis may be confirmed by measuring ethylene glycol levels in the blood; however, many hospitals do not have the ability to perform this test.
Early treatment increases the chance of a good outcome. Treatment consists of stabilizing the person, followed by the use of an antidote. The preferred antidote is fomepizole with ethanol used if this is not available. Hemodialysis may also be used in those where there is organ damage or a high degree of acidosis. Other treatments may include sodium bicarbonate, thiamine, and magnesium.
More than 5000 cases of poisoning occur in the United States each year. Those affected are often adults and male. Deaths from ethylene glycol have been reported as early as 1930. An outbreak of deaths in 1937 due to a medication mixed in a similar compound, diethylene glycol, resulted in the Food, Drug, and Cosmetic Act of 1938 in the United States which mandated evidence of safety before new medications could be sold. Antifreeze products sometimes have a substance to make it bitter added to discourage drinking by children and other animals but this has not been found to be effective.
Common symptoms of mercury poisoning include peripheral neuropathy, presenting as paresthesia or itching, burning, pain, or even a sensation that resembles small insects crawling on or under the skin (formication); skin discoloration (pink cheeks, fingertips and toes); swelling; and desquamation (shedding or peeling of skin).
Mercury irreversibly inhibits selenium-dependent enzymes (see below) and may also inactivate "S"-adenosyl-methionine, which is necessary for catecholamine catabolism by catechol-"O"-methyl transferase. Due to the body's inability to degrade catecholamines (e.g. epinephrine), a person suffering from mercury poisoning may experience profuse sweating, tachycardia (persistently faster-than-normal heart beat), increased salivation, and hypertension (high blood pressure).
Affected children may show red cheeks, nose and lips, loss of hair, teeth, and nails, transient rashes, hypotonia (muscle weakness), and increased sensitivity to light. Other symptoms may include kidney dysfunction (e.g. Fanconi syndrome) or neuropsychiatric symptoms such as emotional lability, memory impairment, or insomnia.
Thus, the clinical presentation may resemble pheochromocytoma or Kawasaki disease. Desquamation (skin peeling) can occur with severe mercury poisoning acquired by handling elemental mercury.
Symptoms may include:
- Abnormal softening of the skull bone (craniotabes—infants and children)
- Blurred vision
- Bone pain or swelling
- Bulging fontanelle (infants)
- Changes in consciousness
- Decreased appetite
- Dizziness
- Double vision (young children)
- Drowsiness
- Headache
- Gastric mucosal calcinosis
- Heart valve calcification
- Hypercalcemia
- Increased intracranial pressure manifesting as cerebral edema, papilledema, and headache (may be referred to as Idiopathic intracranial hypertension)
- Irritability
- Liver damage
- Nausea
- Poor weight gain (infants and children)
- Skin and hair changes
- Cracking at corners of the mouth
- Hair loss
- Higher sensitivity to sunlight
- Oily skin and hair (seborrhea)
- Premature epiphyseal closure
- Skin peeling, itching
- Spontaneous fracture
- Yellow discoloration of the skin (aurantiasis cutis)
- Uremic pruritus
- Vision changes
- Vomiting
In NSF, patients develop large areas of hardened skin with fibrotic nodules and plaques. NSF may also cause joint contractures resulting in joint pain and limitation in range of motion. In its most severe form, NSF may cause severe systemic fibrosis affecting internal organs including the lungs, heart and liver.