Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Treatment usually involves adrenaline (epinephrine), antihistamines, and corticosteroids.
If the entire body is involved, then anaphylaxis can take place, which is an acute, systemic reaction that can prove fatal.
This is an additional type that is sometimes (especially in the UK) used as a distinction from Type 2.
Instead of binding to cell surfaces, the antibodies recognise and bind to the cell surface receptors, which either prevents the intended ligand binding with the receptor or mimics the effects of the ligand, thus impairing cell signaling.
Some clinical examples:
- Graves' disease
- Myasthenia gravis
The use of Type 5 is rare. These conditions are more frequently classified as Type 2, though sometimes they are specifically segregated into their own subcategory of Type 2.
Type I hypersensitivity (or immediate hypersensitivity) is an allergic reaction provoked by reexposure to a specific type of antigen referred to as an allergen. Type I is not to be confused with type II, type III, or type IV hypersensitivities, nor is it to be confused with Type I Diabetes or Type I of any other disease or reaction.
Exposure may be by ingestion, inhalation, injection, or direct contact.
Some clinical examples:
Other examples are:
- Subacute bacterial endocarditis
- Symptoms of malaria
An example of a tuberculosis (TB) infection that comes under control: "M. tuberculosis" cells are engulfed by macrophages after being identified as foreign, but due to an immuno-escape mechanism peculiar to mycobacteria, TB bacteria are able to block the fusion of their enclosing phagosome with lysosomes which would destroy the bacteria. Thereby TB can continue to replicate within macrophages. After several weeks, the immune system somehow [mechanism as yet unexplained] ramps up and, on stimulation with IFN-gamma, the macrophages become capable of killing "M. tuberculosis" by forming phagolysosomes and nitric oxide radicals. The hyper-activated macrophages secrete TNF-α which recruits multiple monocytes to the site of infection. These cells differentiate into epithelioid cells which wall off the infected cells, but results in significant inflammation and local damage.
Some other clinical examples:
- Temporal arteritis
- Leprosy
- Coeliac disease
- Graft-versus-host disease
- Chronic transplant rejection
Allergic inflammation is an important pathophysiological feature of several disabilities or medical conditions including allergic asthma, atopic dermatitis, allergic rhinitis and several ocular allergic diseases. Allergic reactions may generally be divided into two components; the early phase reaction, and the late phase reaction. While the contribution to the development of symptoms from each of the phases varies greatly between diseases, both are usually present and provide us a framework for understanding allergic disease.
The early phase of the allergic reaction typically occurs within minutes, or even seconds, following allergen exposure and is also commonly referred to as the immediate allergic reaction or as a Type I allergic reaction. The reaction is caused by the release of histamine and mast cell granule proteins by a process called degranulation, as well as the production of leukotrienes, prostaglandins and cytokines, by mast cells following the cross-linking of allergen specific IgE molecules bound to mast cell FcεRI receptors. These mediators affect nerve cells causing itching, smooth muscle cells causing contraction (leading to the airway narrowing seen in allergic asthma), goblet cells causing mucus production, and endothelial cells causing vasodilatation and edema.
The late phase of a Type 1 reaction (which develops 8–12 hours and is mediated by mast cells) should not be confused with delayed hypersensitivity Type IV allergic reaction (which takes 48–72 hours to develop and is mediated by T cells). The products of the early phase reaction include chemokines and molecules that act on endothelial cells and cause them to express Intercellular adhesion molecule (such as vascular cell adhesion molecule and selectins), which together result in the recruitment and activation of leukocytes from the blood into the site of the allergic reaction. Typically, the infiltrating cells observed in allergic reactions contain a high proportion of lymphocytes, and especially, of eosinophils. The recruited eosinophils will degranulate releasing a number of cytotoxic molecules (including Major Basic Protein and eosinophil peroxidase) as well as produce a number of cytokines such as IL-5. The recruited T-cells are typically of the Th2 variety and the cytokines they produce lead to further recruitment of mast cells and eosinophils, and in plasma cell isotype switching to IgE which will bind to the mast cell FcεRI receptors and prime the individual for further allergic responses.
NSAID or nonsteroidal anti-inflammatory drug hypersensitivity reactions encompasses a broad range of allergic or allergic-like symptoms that occur within minutes to hours after ingesting aspirin or other NSAID nonsteroidal anti-inflammatory drugs. Hypersensitivity drug reactions differ from drug toxicity reactions in that drug toxicity reactions result from the pharmacological action of a drug, are dose-related, and can occur in any treated individual (see nonsteroidal anti-inflammatory drugs section on adverse reactions for NSAID-induced toxic reactions); hypersensitivity reactions are idiosyncratic reactions to a drug. Although the term NSAID was introduced to signal a comparatively low risk of adverse effects, NSAIDs do evoke a broad range of hypersensitivity syndromes. These syndromes have recently been classified by the European Academy of Allergy and Clinical Immunology Task Force on NSAIDs Hypersensitivity. The classification organizes the hypersensitivity reactions to NSAIDs into the following five categories:
- 1) NSAIDs-exacerbated respiratory disease (NERD) is an acute (immediate to several hours) exacerbation of bronchoconstriction and other symptoms of asthma (see aspirin-induced asthma) in individuals with a history of asthma and/or nasal congestion, rhinorrhea or other symptoms of rhinitis and sinusitis in individuals with a history of rhinosinusitis after ingestion of various NSAIDs, particularly those that act by inhibiting the COX-1 enzyme. NERD does not appear to be due to a true allergic reaction to NSAIDs but rather at least in part to the more direct effects of these drugs to promote the production and/or release of certain mediators of allergy. That is, inhibition of cellular COX activity deprives tissues of its anti-inflammatory product(s), particularly prostaglandin E2 while concurrently shuttling its substrate, arachidonic acid, into other metabolizing enzymes, particularly 5-lipoxygenase (ALOX5) to overproduce pro-inflammatory leukotriene and 5-Hydroxyicosatetraenoic acid metabolites and 15-lipoxygenase (ALOX15) to overproduce pro-inflammatory 15-Hydroxyicosatetraenoic acid metabolites, including eoxins; the condition is also associated with a reduction in the anti-inflammatory metabolite, lipoxin A4, and increases in certain pro-allergic chemokines such as eotaxin-2 and CCL7.
- 2) NSAIDs-exacerbated cutaneous disease (NECD) is an acute exacerbation of wheals and/or angioedema in individuals with a history of chronic urticaria. NECD also appears due to the non-allergic action of NSAIDs in inhibiting the production of COX anti-inflammatory metabolites while promoting the production 5-lipoxygenase and 15-lipoxygenase pro-inflammatory metabolites and the overproduction of certain pro-allergic chemokines, e.g. eotaxin-1, eotaxin-2, RANTES, and interleukin-5.
- 3) NSAIDs-induced urticarial disease (NEUD) is the acute development of wheals and/or angioedema in individuals with no history of chronic NSAIDs-induced urticaria or related diseases. The mechanism behind NEUD is unknown but may be due to the non-allergic action of NSAIDs in promoting the production and/or release of allergy mediators.
- 4) Single NSAID-induced urticarial/angioedema or anaphylaxis (SNIUAA) is the acute development of urticarial, angioedema, or anaphylaxis in response to a single type of NSAID and/or a single group of NSAIDs with a similar structure but not to other structurally unrelated NSAIDs in individuals with no history of underlying relevant chronic diseases. SNIUAA is due to a true IgE-mediated allergy reaction.
- 5 Single NSAID-induced delayed reactions (SNIDR) are a set of delayed onset (usually more than 24 hour) reactions to NSAIDs. SNIDR are most commonly skin reactions that may be relatively mild moderately severe such as maculopapular rash, fixed drug eruptions, photosensitivity reactions, delayed urticaria, and contact dermatitis or extremely severe such as the DRESS syndrome, acute generalized exanthematous pustulosis, the Stevens–Johnson syndrome, and toxic epidermal necrolysis (also termed Lyell's syndrome). SNIDR result from the drug-specific stimulation of CD4+ T lymphocytes and CD8+ cytotoxic T cells to elicit a delayed type hypersensitivity reaction.
The Arthus reaction was discovered by Nicolas Maurice Arthus in 1903. Arthus repeatedly injected horse serum subcutaneously into rabbits. After four injections, he found that there was edema and that the serum was absorbed slowly. Further injections eventually led to gangrene.
Aspirin-induced asthma, also termed Samter's triad, Samter's syndrome, aspirin-exacerbated respiratory disease (AERD), and recently by an appointed task force of the European Academy of Allergy and Clinical Immunology/World Allergy Organization (EAACI/WAO) Nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease (N-ERD). is a medical condition initially defined as consisting of three key features: asthma, respiratory symptoms exacerbated by aspirin, and nasal/ethmoidal polyposis; however, the syndrome's symptoms are exacerbated by a large variety of other nonsteroidal anti-inflammatory drugs (NSAIDs) besides aspirin. The symptoms of respiratory reactions in this syndrome are hypersensitivity reactions to NSAIDs rather than the typically described true allergic reactions that trigger other common allergen-induced asthma, rhinitis, or hives. The NSAID-induced reactions do not appear to involve the common mediators of true allergic reactions, immunoglobulin E or T cells. Rather, AERD is a type of NSAID-induced hypersensitivity syndrome. EAACI/WHO classifies the syndrome as one of 5 types of NSAID hypersensitivity or NSAID hypersensitivity reactions.
Hypersensitivity (also called hypersensitivity reaction or intolerance) is a set of undesirable reactions produced by the normal immune system, including allergies and autoimmunity. They are usually referred to as an over- reaction of the immune system and these reactions may be damaging, uncomfortable, or occasionally fatal. Hypersensitivity reactions require a pre-sensitized (immune) state of the host. They are classified in four groups after the proposal of P. G. H. Gell and Robin Coombs in 1963.
The various non-allergic NSAID hypersensitivity syndromes affect 0.5–1.9% of the general population, with AERD affecting about 7% of all asthmatics and about 14% of patients with severe asthma. AERD, which is more prevalent in women, usually begins in young adulthood (twenties and thirties are the most common onset times although children are afflicted with it and present a diagnostic problem in pediatrics) and may not include any other allergies. Most commonly the first symptom is rhinitis (inflammation or irritation of the nasal mucosa), which can manifest as sneezing, runny nose, or congestion. The disorder typically progresses to asthma, then nasal polyposis, with aspirin sensitivity coming last. Anosmia (lack of smell) is also common, as inflammation within the nose and sinuses likely reaches the olfactory receptors.
The respiratory reactions to aspirin vary in severity, ranging from mild nasal congestion and eye watering to lower respiratory symptoms including wheezing, coughing, an asthma attack, and in rare cases, anaphylaxis. In addition to the typical respiratory reactions, about 10% of patients with AERD manifest skin symptoms like urticaria and/or gastrointestinal symptoms such as abdominal pain or vomiting during their reactions to aspirin.
In addition to aspirin, patients usually also react to other NSAIDs such as ibuprofen, and to any medication that inhibits the cyclooxygenase-1 (COX-1) enzyme, although paracetamol (acetaminophen) in low doses is generally considered safe. NSAID that are highly selective in blocking COX-2 and do not block its closely related paralog, COX-1, such as the COX-2 inhibitors celecoxib and rofecoxib, are also regarded as safe. Nonetheless, recent studies do find that these types of drugs, e.g. acetaminophen and celecoxib, may trigger adverse reactions in these patients; caution is recommended in using any COX inhibitors. In addition to aspirin and NSAIDs, consumption of even small amounts of alcohol also produces uncomfortable respiratory reactions in many patients.
Type III hypersensitivity occurs when there is an excess of antigen, leading to small immune complexes being formed that fix complement and are not cleared from the circulation. It involves soluble antigens that are not bound to cell surfaces (as opposed to those in type II hypersensitivity). When these antigens bind antibodies, immune complexes of different sizes form. Large complexes can be cleared by macrophages but macrophages have difficulty in the disposal of small immune complexes. These immune complexes insert themselves into small blood vessels, joints, and glomeruli, causing symptoms. Unlike the free variant, a small immune complex bound to sites of deposition (like blood vessel walls) are far more capable of interacting with complement; these medium-sized complexes, formed in the slight excess of antigen, are viewed as being highly pathogenic.
Such depositions in tissues often induce an inflammatory response, and can cause damage wherever they precipitate. The cause of damage is as a result of the action of cleaved complement anaphylotoxins C3a and C5a, which, respectively, mediate the induction of granule release from mast cells (from which histamine can cause urticaria), and recruitment of inflammatory cells into the tissue (mainly those with lysosomal action, leading to tissue damage through frustrated phagocytosis by PMNs and macrophages).
The reaction can take hours, days, or even weeks to develop, depending on whether or not there is immunological memory of the precipitating antigen. Typically, clinical features emerge a week following initial antigen challenge, when the deposited immune complexes can precipitate an inflammatory response. Because of the nature of the antibody aggregation, tissues that are associated with blood filtration at considerable osmotic and hydrostatic gradient (e.g. sites of urinary and synovial fluid formation, kidney glomeruli and joint tissues respectively) bear the brunt of the damage. Hence, vasculitis, glomerulonephritis and arthritis are commonly associated conditions as a result of type III hypersensitivity responses.
As observed under methods of histopathology, acute necrotizing vasculitis within the affected tissues is observed concomitant to neutrophilic infiltration, along with notable eosinophilic deposition (fibrinoid necrosis). Often, immunofluorescence microscopy can be used to visualize the immune complexes. Skin response to a hypersensitivity of this type is referred to as an Arthus reaction, and is characterized by local erythema and some induration. Platelet aggregation, especially in microvasculature, can cause localized clot formation, leading to blotchy hemorrhages. This typifies the response to injection of foreign antigen sufficient to lead to the condition of serum sickness.
In immunology, the Arthus reaction (, ) is a type of local type III hypersensitivity reaction. Type III hypersensitivity reactions are immune complex-mediated, and involve the deposition of antigen/antibody complexes mainly in the vascular walls, serosa (pleura, pericardium, synovium), and glomeruli. This reaction is usually encountered in experimental settings following the injection of antigens.
Type 4 hypersensitivity is often called delayed type hypersensitivity as the reaction takes several days to develop. Unlike the other types, it is not antibody-mediated but rather is a type of cell-mediated response.
CD4+ T1 helper T cells recognize antigen in a complex with the MHC class II major histocompatibility complex on the surface of antigen-presenting cells. These can be macrophages that secrete IL-12, which stimulates the proliferation of further CD4+ T1 cells. CD4+ T cells secrete IL-2 and interferon gamma, inducing the further release of other T1 cytokines, thus mediating the immune response. Activated CD8+ T cells destroy target cells on contact, whereas activated macrophages produce hydrolytic enzymes and, on presentation with certain intracellular pathogens, transform into multinucleated giant cells.
Many allergens such as dust or pollen are airborne particles. In these cases, symptoms arise in areas in contact with air, such as eyes, nose, and lungs. For instance, allergic rhinitis, also known as hay fever, causes irritation of the nose, sneezing, itching, and redness of the eyes. Inhaled allergens can also lead to increased production of mucus in the lungs, shortness of breath, coughing, and wheezing.
Aside from these ambient allergens, allergic reactions can result from foods, insect stings, and reactions to medications like aspirin and antibiotics such as penicillin. Symptoms of food allergy include abdominal pain, bloating, vomiting, diarrhea, itchy skin, and swelling of the skin during hives. Food allergies rarely cause respiratory (asthmatic) reactions, or rhinitis. Insect stings, food, antibiotics, and certain medicines may produce a systemic allergic response that is also called anaphylaxis; multiple organ systems can be affected, including the digestive system, the respiratory system, and the circulatory system. Depending on the rate of severity, it can cause a skin reactions, bronchoconstriction, swelling, low blood pressure, coma, and death. This type of reaction can be triggered suddenly, or the onset can be delayed. The nature of anaphylaxis is such that the reaction can seem to be subsiding, but may recur throughout a period of time.
Atopy (atopic syndrome) is a syndrome characterized by a tendency to be “hyperallergic”. A person with atopy typically presents with one or more of the following: eczema (atopic dermatitis), allergic rhinitis (hay fever), or allergic asthma. Some patients with atopy display what is referred to as the “allergic triad” of symptoms, i.e. all three of the aforementioned conditions. Patients with atopy also have a tendency to have food allergies, allergic conjunctivitis, and other symptoms characterized by their hyperallergic state. For example, eosinophilic esophagitis is found to be associated with atopic allergies.
Atopic syndrome can be fatal for those who experience serious allergic reactions, such as anaphylaxis, brought on by reactions to food or environment.
In type II hypersensitivity (also tissue-specific, or cytotoxic hypersensitivity) the antibodies produced by the immune response bind to antigens on the patient's own cell surfaces. The antigens recognized in this way may either be intrinsic ("self" antigen, innately part of the patient's cells) or extrinsic (adsorbed onto the cells during exposure to some foreign antigen, possibly as part of infection with a pathogen). These cells are recognized by macrophages or dendritic cells, which act as antigen-presenting cells. This causes a B cell response, wherein antibodies are produced against the foreign antigen.
An example of type II hypersensitivity is the ABO blood incompatibility where the red blood cells have different antigens, causing them to be recognized as different; B cell proliferation will take place and antibodies to the foreign blood type are produced. IgG and IgM antibodies bind to these antigens to form complexes that activate the classical pathway of complement activation to eliminate cells presenting foreign antigens. That is, mediators of acute inflammation are generated at the site and membrane attack complexes cause cell lysis and death. The reaction takes hours to a day.
Type II reactions can affect healthy cells. Examples include red blood cells in autoimmune hemolytic anemia and acetylcholine receptors in myasthenia gravis.
Another example of type II hypersensitivity reaction is Goodpasture's syndrome where the basement membrane (containing collagen type IV) in the lung and kidney is attacked by one's own antibodies.
Another form of type II hypersensitivity is called antibody-dependent cell-mediated cytotoxicity (ADCC). Here, cells exhibiting the foreign antigen are tagged with antibodies (IgG or IgM). These tagged cells are then recognised by natural killer cells (NK) and macrophages (recognised via IgG bound (via the Fc region) to the effector cell surface receptor, CD16 (FcγRIII)), which in turn kill these tagged cells.
Allergies are caused by an oversensitive immune system, leading to a misdirected immune response. The immune system normally protects the body against harmful substances such as bacteria and viruses. Allergy occurs when the immune system reacts to substances (allergens) that are generally harmless and in most people do not cause an immune response.
- Animal hair and dander
- cockroach calyx
- dust mite excretion
The most common type of eruption is a morbilliform (resembling measles) or erythematous rash (approximately 90% of cases). Less commonly, the appearance may also be urticarial, papulosquamous, pustular, purpuric, bullous (with blisters) or lichenoid. Angioedema can also be drug-induced (most notably, by angiotensin converting enzyme inhibitors).
Allergies, also known as allergic diseases, are a number of conditions caused by hypersensitivity of the immune system to something in the environment that usually causes little or no problem in most people. These diseases include hay fever, food allergies, atopic dermatitis, allergic asthma, and anaphylaxis. Symptoms may include red eyes, an itchy rash, sneezing, a runny nose, shortness of breath, or swelling. Food intolerances and food poisoning are separate conditions.
Common allergens include pollen and certain food. Metals and other substances may also cause problems. Food, insect stings, and medications are common causes of severe reactions. Their development is due to both genetic and environmental factors. The underlying mechanism involves immunoglobulin E antibodies (IgE), part of the body's immune system, binding to an allergen and then to a receptor on mast cells or basophils where it triggers the release of inflammatory chemicals such as histamine. Diagnosis is typically based on a person's medical history. Further testing of the skin or blood may be useful in certain cases. Positive tests, however, may not mean there is a significant allergy to the substance in question.
Early exposure to potential allergens may be protective. Treatments for allergies include avoiding known allergens and the use of medications such as steroids and antihistamines. In severe reactions injectable adrenaline (epinephrine) is recommended. Allergen immunotherapy, which gradually exposes people to larger and larger amounts of allergen, is useful for some types of allergies such as hay fever and reactions to insect bites. Its use in food allergies is unclear.
Allergies are common. In the developed world, about 20% of people are affected by allergic rhinitis, about 6% of people have at least one food allergy, and about 20% have atopic dermatitis at some point in time. Depending on the country about 1–18% of people have asthma. Anaphylaxis occurs in between 0.05–2% of people. Rates of many allergic diseases appear to be increasing. The word "allergy" was first used by Clemens von Pirquet in 1906.
Some of the most severe and life-threatening examples of drug eruptions are erythema multiforme, Stevens–Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), hypersensitivity vasculitis, Drug induced hypersensitivity syndrome (DIHS), erythroderma and acute generalized exanthematous pustulosis (AGEP). These severe cutaneous drug eruptions are categorized as hypersensitivity reactions and are immune-mediated. There are four types of hypersensitivity reactions and many drugs can induce one or more hypersensitivity reactions.
Atopy is a predisposition toward developing certain allergic hypersensitivity reactions.
Atopy may have a hereditary component, although contact with the allergen or irritant must occur before the hypersensitivity reaction can develop. Maternal psychological trauma in utero may also be a strong indicator for development of atopy.
The term "atopy" was coined by Coca and Cooke in 1923. Many physicians and scientists use the term "atopy" for any IgE-mediated reaction (even those that are appropriate and proportional to the antigen), but many pediatricians reserve the word "atopy" for a genetically mediated predisposition to an excessive IgE reaction. The term is from Greek ἀτοπία meaning "placelessness".
When an antiserum is given, the human immune system can mistake the proteins present for harmful antigens. The body produces antibodies, which combine with these proteins to form immune complexes. These complexes precipitate, enter the walls of blood vessels, and activate the complement cascade, initiating an inflammatory response and consuming much of the available complement component 3 (C3). The result is a leukocytoclastic vasculitis. This results in hypocomplementemia, a low C3 level in serum. They can also cause more reactions resulting in typical symptoms of serum sickness.
Symptoms of an allergic reaction to animals may include itchy skin, nasal congestion, itchy nose, sneezing, chronic sore throat or itchy throat, swollen, red, itchy, and watery eyes, coughing, asthma, or rash on the face or chest.
A typical allergic reaction to alpha-gal has a delayed onset, occurring 3–8 hours after the consumption of mammalian meat products, instead of the typical rapid onset with most food allergies. After the delayed onset, the allergic response is typical of most food allergies, and especially an IgE mediated allergy, including severe whole-body itching, hives, angioedema, gastrointestinal upset, and possible anaphylaxis. In 70% of cases the reaction is accompanied by respiratory distress and as such is particularly harmful to those with asthma.
Alpha-gal allergies are the first food allergies to come with the possibility of delayed anaphylaxis. It is also the first food-related allergy to be associated with a carbohydrate, rather than a protein.