Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Clinically, three distinct patterns of palmoplantar keratoderma may be identified: diffuse, focal, and punctate.
Diffuse palmoplantar keratoderma is a type of palmoplantar keratoderma that is characterized by an even, thick, symmetric hyperkeratosis over the whole of the palm and sole, usually evident at birth or in the first few months of life. Restated, diffuse palmoplantar keratoderma is an autosomal dominant disorder in which hyperkeratosis is confined to the palms and soles. The two major types can have a similar clinical appearance:
- "Diffuse epidermolytic palmoplantar keratoderma" (also known as "Palmoplantar keratoderma cum degeneratione granulosa Vörner," "Vörner's epidermolytic palmoplantar keratoderma", and "Vörner keratoderma") is one of the most common patterns of palmoplantar keratoderma, an autosomal dominant condition that presents within the first few months of life, characterized by a well-demarcated, symmetric thickening of palms and soles, often with a "dirty" snakeskin appearance due to underlying epidermolysis.
- "Diffuse nonepidermolytic palmoplantar keratoderma" (also known as "Diffuse orthohyperkeratotic keratoderma," "Hereditary palmoplantar keratoderma," "Keratosis extremitatum progrediens," "Keratosis palmoplantaris diffusa circumscripta," "Tylosis," "Unna–Thost disease", and "Unna–Thost keratoderma") is inherited as an autosomal dominant condition and is present from infancy, characterized by a well-demarcated, symmetric, often "waxy" keratoderma involving the whole of the palms and soles.
The differential diagnosis is quite extensive and includes
- Buschke–Fischer–Brauer disease
- Curth–Macklin ichthyosis
- Gamborg Nielsen syndrome
- Greither disease
- Haber syndrome
- Hereditary punctate palmoplantar keratoderma
- Jadassohn–Lewandowsky syndrome
- Keratosis follicularis spinulosa decalvans
- Keratosis linearis with ichthyosis congenital and sclerosing keratoderma syndrome
- Meleda disease
- Mucosa hyperkeratosis syndrome
- Naegeli–Franceschetti–Jadassohn syndrome
- Naxos disease
- Olmsted syndrome
- Palmoplantar keratoderma and leukokeratosis anogenitalis
- Pandysautonomia
- Papillomatosis of Gougerot and Carteaud
- Papillon–Lefèvre syndrome
- Punctate porokeratotic keratoderma
- Richner–Hanhart syndrome
- Schöpf–Schulz–Passarge syndrome
- Unna Thost disease
- Vohwinkel syndrome
- Wong's dermatomyositis
Howel–Evans syndrome is an extremely rare condition involving thickening of the skin in the palms of the hands and the soles of the feet (hyperkeratosis). This familial disease is associated with a high lifetime risk of esophageal cancer. For this reason, it is sometimes known as tylosis with oesophageal cancer (TOC).
The condition is inherited in an autosomal dominant manner, and it has been linked to a mutation in the "RHBDF2" gene. It was first described in 1958.
Harderoporphyria is a rare disorder of heme biosynthesis, inherited in an autosomal recessive manner caused by specific mutations in the "CPOX" gene. Mutations in "CPOX" usually cause hereditary coproporphyria, an acute hepatic porphyria, however the K404E mutation in a homozygous or compound heterozygous state with a null allele cause the more severe harderoporphyria. Harderoporphyria is the first known metabolic disorder where the disease phenotype depended on the type and location of the mutations in a gene associated with multiple disorders.
In contrast with other porphyrias, which typically present with either cutaneous lesions after exposure to sunlight or acute neurovisceral attack at any age (most commonly in adulthood), harderoporphyria is characterized by jaundice, anemia enlarged liver and spleen, often presenting in the neonatal period. Later in life, these individuals may present with photosensitivity similar to that found in cutaneous porphyrias.
Biochemically, harderoporphyria presents with a distinct pattern of increased harderoporphyrin (2-vinyl-4,6,7-tripropionic acid porphyrin) in urine and particularly in feces, a metabolite that is not seen in significant quantities in any other porphyria. Enzyme tests show markedly reduced activity of coproporphyrinogen oxidase, compared to both unaffected individuals and those affected with hereditary coproporphyria, consistent with recessive inheritance.
Harderoporphyria is a rare condition, with less than 10 cases reported worldwide. It may be underdiagnosed, as it does not have the typical presentation associated with a porphyria. It was identified as a variant type of coproporphyria in 1983, in a family with three children identified at birth with jaundice and hemolytic anemia. There is no standard treatment for harderoporphyria; care is mainly focused on the management of symptoms.
Autosomal Dominant Retinal Vasculopathy with Cerebral Leukodystrophy (AD-RVCL) (previously known also as Cerebroretinal Vasculopathy, CRV, or Hereditary Vascular Retinopathy, HVR or Hereditary Endotheliopathy, Retinopathy, Nephropathy, and Stroke, HERNS) is an inherited condition resulting from a frameshift mutation to the TREX1 gene. This genetically inherited condition affects the retina and the white matter of the central nervous system, resulting in vision loss, lacunar strokes and ultimately dementia. Symptoms commonly begin in the early to mid-forties, and treatments currently aim to manage or alleviate the symptoms rather than treating the underlying cause. The overall prognosis is poor, and death can sometimes occur within 10 years of the first symptoms appearing.
AD-RVCL (CRV) Acronym
Autosomal Dominance (genetics) means only one copy of the gene is necessary for the symptoms to manifest themselves.
Retinal Vasculopathy means a disorder that is associated with a disease of the blood vessels in the retina.
Cerebral means having to do with the brain.
Leukodystrophy means a degeneration of the white matter of the brain.
Pathogenesis
The main pathologic process centers on small blood vessels that prematurely “drop out” and disappear. The retina of the eye and white matter of the brain are the most sensitive to this pathologic process. Over a five to ten-year period, this vasculopathy (blood vessel pathology) results in vision loss and destructive brain lesions with neurologic deficits and death.
Most recently, AD-RVCL (CRV) has been renamed. The new name is CHARIOT which stands for Cerebral Hereditary Angiopathy with vascular Retinopathy and Impaired Organ function caused by TREX1 mutations.
Treatment
Currently, there is no therapy to prevent the blood vessel deterioration.
About TREX1
The official name of the TREX1 gene is “three prime repair exonuclease 1.” The normal function of the TREX1 gene is to provide instructions for making the 3-prime repair exonuclease 1 enzyme. This enzyme is a DNA exonuclease, which means it trims molecules of DNA by removing DNA building blocks (nucleotides) from the ends of the molecules. In this way, it breaks down unneeded DNA molecules or fragments that may be generated during genetic material in preparation for cell division, DNA repair, cell death, and other processes.
Changes (mutations) to the TREX1 gene can result in a range of conditions one of which is AD-RVCL. The mutations to the TREX1 gene are believed to prevent the production of the 3-prime repair exonuclease 1 enzyme. Researchers suggest that the absence of this enzyme may result in an accumulation of unneeded DNA and RNA in cells. These DNA and RNA molecules may be mistaken by cells for those of viral invaders, triggering immune system reactions that result in the symptoms of AD-RVCL.
Mutations in the TREX1 gene have also been identified in people with other disorders involving the immune system. These disorders include a chronic inflammatory disease called systemic lupus erythematosus (SLE), including a rare form of SLE called chilblain lupus that mainly affects the skin.
The TREX1 gene is located on chromosome 3: base pairs 48,465,519 to 48,467,644
The immune system.
- The immune system is composed of white blood cells or leukocytes.
- There are 5 different types of leukocytes.
- Combined, the 5 different leukocytes represent the 2 types of immune systems (The general or innate immune system and the adaptive or acquired immune system).
- The adaptive immune system is composed of two types of cells (B-cells which release antibodies and T-cells which destroy abnormal and cancerous cells).
How the immune system becomes part of the condition.
During mitosis, tiny fragments of “scrap” single strand DNA naturally occur inside the cell. Enzymes find and destroy the “scrap” DNA. The TREX1 gene provides the information necessary to create the enzyme that destroys this single strand “scrap” DNA. A mutation in the TREX1 gene causes the enzyme that would destroy the single strand DNA to be less than completely effective. The less than completely effective nature of the enzyme allows “scrap” single strand DNA to build up in the cell. The buildup of “scrap” single strand DNA alerts the immune system that the cell is abnormal.
The abnormality of the cells with the high concentration of “scrap” DNA triggers a T-cell response and the abnormal cells are destroyed. Because the TREX1 gene is identical in all of the cells in the body the ineffective enzyme allows the accumulation of “scrap” single strand DNA in all of the cells in the body. Eventually, the immune system has destroyed enough of the cells in the walls of the blood vessels that the capillaries burst open. The capillary bursting happens throughout the body but is most recognizable when it happens in the eyes and brain because these are the two places where capillary bursting has the most pronounced effect.
Characteristics of AD-RVCL
- No recognizable symptoms until after age 40.
- No environmental toxins have been found to be attributable to the condition.
- The condition is primarily localized to the brain and eyes.
- Optically correctable, but continuous, deterioration of visual acuity due to extensive multifocal microvascular abnormalities and retinal neovascularization leading, ultimately, to a loss of vision.
- Elevated levels of alkaline phosphatase.
- Subtle vascular changes in the retina resembling telangiectasia (spider veins) in the parafovea circulation.
- Bilateral capillary occlusions involving the perifovea vessels as well as other isolated foci of occlusion in the posterior pole of the retina.
- Headaches due to papilledema.
- Mental confusion, loss of cognitive function, loss of memory, slowing of speech and hemiparesis due to “firm masses” and white, granular, firm lesions in the brain.
- Jacksonian seizures and grand mal seizure disorder.
- Progressive neurologic deterioration unresponsive to systemic corticosteroid therapy.
- Discrete, often confluent, foci of coagulation necrosis in the cerebral white matter with intermittent findings of fine calcium deposition within the necrotic foci.
- Vasculopathic changes involving both arteries and veins of medium and small caliber present in the cerebral white matter.
- Fibroid necrosis of vessel walls with extravasation of fibrinoid material into adjacent parenchyma present in both necrotic and non-necrotic tissue.
- Obliterative fibrosis in all the layers of many vessel walls.
- Parivascular, adventitial fibrosis with limited intimal thickening.
Conditions with similar symptoms that AD-RVCL can be misdiagnosed as:
- Brain tumors
- Diabetes
- Macular degeneration
- Telangiectasia (Spider veins)
- Hemiparesis (Stroke)
- Glaucoma
- Hypertension (high blood pressure)
- Systemic Lupus Erythematosus (SLE (same original pathogenic gene, but definitely a different disease because of a different mutation in TREX1))
- Polyarteritis nodosa
- Granulomatosis with polyangiitis
- Behçet's disease
- Lymphomatoid granulomatosis
- Vasculitis
Clinical Associations
- Raynaud's phenomenon
- Anemia
- Hypertension
- Normocytic anemia
- Normochromic anemia
- Gastrointestinal bleeding or telangiectasias
- Elevated alkaline phosphatase
Definitions
- Coagulation necrosis
- Endothelium
- Fibrinoid
- Fibrinoid necrosis
- Frameshift mutation
- Hemiparesis
- Jacksonian seizure
- Necrotic
- Necrosis
- Papilledema
- Perivascular
- Retinopathy
- Telangiectasia
- Vasculopathy
- Vascular
What AD-RVCL is not:
- Infection
- Cancer
- Diabetes
- Glaucoma
- Hypertension
- A neurological disorder
- Muscular dystrophy
- Systemic Lupus Erythematosis (SLE)
- Vasculitis
Things that have been tried but turned out to be ineffective or even make things worse:
- Antibiotics
- Steroids
- X-Ray therapy
- Immunosuppression
History of AD-RVCL (CRV)
- 1985 – 1988: CRV (Cerebral Retinal Vasculopathy) was discovered by John P. Atkinson, MD at Washington University School of Medicine in St. Louis, MO
- 1988: 10 families worldwide were identified as having CRV
- 1991: Related disease reported, HERNS (Hereditary Endiotheliopathy with Retinopathy, Nephropathy and Stroke – UCLA
- 1998: Related disease reported, HRV (Hereditary Retinal Vasculopathy) – Leiden University, Netherlands
- 2001: Localized to Chromosome 3.
- 2007: The specific genetic defect in all of these families was discovered in a single gene called TREX1
- 2008: Name changed to AD-RVCL Autosomal Dominant-Retinal Vasculopathy with Cerebral Leukodystrophy
- 2009: Testing for the disease available to persons 21 and older
- 2011: 20 families worldwide were identified as having CRV
- 2012: Obtained mouse models for further research and to test therapeutic agents
The diagnosis is based on the following clinical findings:
- microcephaly
- clinodactyly and shortness of index and little fingers
- syndactyly of 2nd & 3rd and 4th & 5th toe
- short palpebral fissures
- esophageal and/or duodenal atresia
Hereditary stomatocytosis describes a number of inherited autosomal dominant human conditions which affect the red blood cell, in which the membrane or outer coating of the cell 'leaks' sodium and potassium ions.
Type 1 vWD (60-80% of all vWD cases) is a quantitative defect which is heterozygous for the defective gene. It can arise from failure to secrete vWF into the circulation or from vWF being cleared more quickly than normal. Decreased levels of vWF are detected at 20-50% of normal, i.e. 20-50 IU.
Many patients are asymptomatic or may have mild symptoms and not have clearly impaired clotting, which might suggest a bleeding disorder. Often, the discovery of vWD occurs incidentally to other medical procedures requiring a blood work-up. Most cases of type 1 vWD are never diagnosed due to the asymptomatic or mild presentation of type I and most people usually end up leading a normal life free of complications, with many being unaware that they have the disorder.
Trouble may, however, arise in some patients in the form of bleeding following surgery (including dental procedures), noticeable easy bruising, or menorrhagia (heavy menstrual periods). The minority of cases of type 1 may present with severe hemorrhagic symptoms.
Meige lymphedema, also known as Meige disease, Late-onset lymphedema, and Lymphedema hereditary type 2, is an inherited disease in which patients develop lymphedema. The onset is between the ages of 1 and 35. Other causes of primary lympoedema include Milroy's disease which occurs before the age of 1, and lymphoedema tarda which occurs after the age of 35.
Meige disease,(Hereditary lymphedema type II), has its onset around the time of puberty. It is an autosomal dominant disease. It has been linked to a mutations in the ‘forkhead’ family transcription factor (FOXC2) gene located on the long arm of chromosome 16 (16q24.3). It is the most common form of primary lymphedema, and about 2000 cases have been identified. Meige disease usually causes lymphedema of the legs, however, other areas of the body may be affected, including the arms, face and larynx. Yellow toe nails occur in some individuals.
Haematologists have identified a number of variants. These can be classified as below.
- Overhydrated hereditary stomatocytosis
- Dehydrated HSt (hereditary xerocytosis; hereditary hyperphosphatidylcholine haemolytic anaemia)
- Dehydrated with perinatal ascites
- Cryohydrocytosis
- 'Blackburn' variant.
- Familial pseudohyperkalaemia
There are other families that do not fall neatly into any of these classifications.
Stomatocytosis is also found as a hereditary disease in Alaskan malamute and miniature schnauzer dogs.
The various types of vWD present with varying degrees of bleeding tendency, usually in the form of easy bruising, nosebleeds, and bleeding gums. Women may experience heavy menstrual periods and blood loss during childbirth.
Severe internal bleeding and bleeding into joints are uncommon in all but the most severe type, vWD type 3.
A cancer syndrome or family cancer syndrome is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancers and may also cause the early onset of these cancers. Cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors. Many of these syndromes are caused by mutations in tumor suppressor genes, genes that are involved in protecting the cell from turning cancerous. Other genes that may be affected are DNA repair genes, oncogenes and genes involved in the production of blood vessels (angiogenesis). Common examples of inherited cancer syndromes are hereditary breast-ovarian cancer syndrome and hereditary non-polyposis colon cancer (Lynch syndrome).
The clinical appearance is considerably varied in both the orientation, number, depth and length of the fissure pattern. There are usually multiple grooves/furrows 2–6 mm in depth present. Sometimes there is a large central furrow, with smaller fissures branching perpendicularly. Other patterns may show a mostly dorsolateral position of the fissures (i.e. sideways running grooves on the tongue's upper surface). Some patients may experience burning or soreness.
Feingold syndrome is caused by mutations in the neuroblastoma-derived V-myc avian myelocytomatosis viral-related oncogene (MYCN) which is located on the short arm of chromosome 2 (2p24.1).
Polyps are most frequent in the stomach and large intestine, are also found in the small intestine, and are least frequent in the esophagus. A biopsy will reveal them to be hamartomas; the possibility that they progress to cancer is generally considered to be low, although it has been reported multiple times in the past. Chronic diarrhea and protein-losing enteropathy are often observed. Possible collateral features include variable anomalies of ectodermal tissues, such as alopecia, atrophy of the nails, or skin pigmentation
Neonatal jaundice may develop in the presence of sepsis, hypoxia, hypoglycemia, hypothyroidism, hypertrophic pyloric stenosis, galactosemia, fructosemia, etc.
Hyperbilirubinemia of the unconjugated type may be caused by:
- increased production
- hemolysis (e.g., hemolytic disease of the newborn, hereditary spherocytosis, sickle cell disease)
- ineffective erythropoiesis
- massive tissue necrosis or large hematomas
- decreased clearance
- drug-induced
- physiological neonatal jaundice and prematurity
- liver diseases such as advanced hepatitis or cirrhosis
- breast milk jaundice and Lucey–Driscoll syndrome
- Crigler–Najjar syndrome and Gilbert syndrome
In Crigler–Najjar syndrome and Gilbert syndrome, routine liver function tests are normal, and hepatic histology usually is normal, too. No evidence for hemolysis is seen. Drug-induced cases typically regress after discontinuation of the substance. Physiological neonatal jaundice may peak at 85–170 µmol/l and decline to normal adult concentrations within two weeks. Prematurity results in higher levels.
Southeast Asian ovalocytosis is a blood disorder that is similar to, but distinct from hereditary elliptocytosis. It is common in some communities in Malaysia and Papua New Guinea, as it confers some resistance to cerebral Falciparum Malaria.
Distal spinal muscular atrophy type 2 (DSMA2), also known as Jerash type distal hereditary motor neuropathy (HMN-J) — is a very rare childhood-onset genetic disorder characterised by progressive muscle wasting affecting lower and subsequently upper limbs. The disorder has been described in Arab inhabitants of Jerash region in Jordan as well as in a Chinese family.
The condition is linked to a genetic mutation in the "SIGMAR1" gene on chromosome 19 (locus 19p13.3) and is likely inherited in an autosomal recessive manner.
Albright's hereditary osteodystrophy is a form of osteodystrophy, and is classified as the phenotype of pseudohypoparathyroidism type 1A; this is a condition in which the body does not respond to parathyroid hormone.
Fissured tongue is seen in Melkersson-Rosenthal syndrome (along with facial nerve paralysis and granulomatous cheilitis). It is also seen in most patients with Down syndrome, in association with geographic tongue, in patients with oral manifestations of psoriasis, and in healthy individuals. Fissured tongue is also sometimes a feature of Cowden's syndrome.
The symptoms of choroid plexus carcinoma are similar to those of other brain tumors. They include:
- Persistent or new onset headaches
- Macrocephaly or bulging fontanels in infants.
- Loss of appetite (refusal to take food in infants)
- Papilledema
- Nausea and emesis
- Ataxia
- Strabismus
- Developmental delays
- Altered mental status
Haemochromatosis is in its manifestations, "i.e.", often presenting with signs or symptoms suggestive of other diagnoses that affect specific organ systems. Many of the signs and symptoms below are uncommon and most patients with the hereditary form of haemochromatosis do not show any overt signs of disease nor do they suffer premature morbidity.
The classic triad of cirrhosis, bronze skin and diabetes is not as common any more because of earlier diagnosis.
The more common clinical manifestations include:
- Fatigue
- Malaise
- Joint and bone pain
- Liver cirrhosis (with an increased risk of hepatocellular carcinoma) Liver disease is always preceded by evidence of liver dysfunction including elevated serum enzymes specific to the liver, clubbing of the fingers, leuconychia, asterixis, hepatomegaly, palmar erythema and spider naevi. Cirrhosis can also present with jaundice (yellowing of the skin) and ascites.
- Insulin resistance (often patients have already been diagnosed with diabetes mellitus type 2) due to pancreatic damage from iron deposition
- Erectile dysfunction and hypogonadism, resulting in decreased libido
- Congestive heart failure, abnormal heart rhythms or pericarditis
- Arthritis of the hands (especially the second and third MCP joints), but also the knee and shoulder joints
- Damage to the adrenal gland, leading to adrenal insufficiency
Less common findings including:
- Deafness
- Dyskinesias, including Parkinsonian symptoms
- Dysfunction of certain endocrine organs:
- Parathyroid gland (leading to hypocalcaemia)
- Pituitary gland
- More commonly a slate-grey or less commonly darkish colour to the skin (see pigmentation, hence its name "diabetes bronze" when it was first described by Armand Trousseau in 1865)
- An increased susceptibility to certain infectious diseases caused by siderophilic microorganisms:
- "Vibrio vulnificus" infections from eating seafood or wound infection
- "Listeria monocytogenes"
- "Yersinia enterocolica"
- "Salmonella enterica" (serotype Typhymurium)
- "Klebsiella pneumoniae"
- "Escherichia coli"
- "Rhizopus arrhizus"
- "Mucor" species
Males are usually diagnosed after their forties and fifties, and women several decades later, owing to regular iron loss through menstruation (which ceases in menopause). The severity of clinical disease in the hereditary form varies considerably. There is evidence suggesting that hereditary haemochromatosis patients affected with other liver ailments such as hepatitis or alcoholic liver disease suffer worse liver disease than those with either condition alone. There are also juvenile forms of hereditary haemochromatosis that present in childhood with the same consequences of iron overload.
Muir–Torre syndrome (MTS) is a rare hereditary, autosomal dominant cancer syndrome that is thought to be a subtype of HNPCC. Individuals are prone to develop cancers of the colon, genitourinary tract, and skin lesions, such as keratoacanthomas and sebaceous tumors. The genes affected are MLH1, MSH2, and more recently, MSH6, and are involved in DNA mismatch repair.
Type II differs from type I in several aspects:
- Bilirubin levels are generally below 345 µmol/L [20 mg/dL] (range 100–430 µmol/L [6–24 mg/dL]; thus, overlap occurs), and some cases are only detected later in life.
- Because of lower serum bilirubin, kernicterus is rare in type II.
- Bile is pigmented, instead of pale in type I or dark as normal, and monoconjugates constitute the largest fraction of bile conjugates.
- UGT1A1 is present at reduced but detectable levels (typically <10% of normal), because of single base pair mutations.
- Therefore, treatment with phenobarbital is effective, generally with a decrease of at least 25% in serum bilirubin. In fact, this can be used, along with these other factors, to differentiate type I and II.
- The inheritance pattern of Crigler–Najjar syndrome type II has been difficult to determine, but is generally considered to be autosomal recessive.