Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most common presentation of Milroy Disease is bilateral lower extremity lymphedema, and may also be accompanied by hydrocele.
The classification of this syndrome is difficult. Three conditions are known to be caused by mutations in the" CYLD" gene: Brooke-Spiegler syndrome, multiple familial trichoepithelioma, and familial cylindromatosis. Clinically, these are distinct, but appear to arise from mutations in the same gene.
Types include:
Brooke-Spiegler syndrome is a condition where multiple skin tumors develop from skin structures. Tumors commonly occurring in this syndrome include spiradenomas, trichoepitheliomas, and cylindromas. The tumors are generally benign, but may become malignant. Affected individuals are also at increased risk of developing tumors in tissues other than skin – particularly benign or malignant tumors of the salivary glands.
Tumours in Brooke-Spiegler typically appear in early adulthood and are most often found on the head and neck. In severe cases, the tumors may affect vision or hearing. They can be disfiguring and may contribute to depression or other psychological problems. For unclear reasons, females are often more severely affected than males.
Brooke-Spiegler is rare and its exact incidence is unknown.
It is inherited in an autosomal dominant fashion.
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
Palmar xanthoma is clinically characterized by yellowish plaques that involve the palms and flexural surfaces of the fingers. Plane xanthomas are characterised by yellowish to orange, flat macules or slightly elevated plaques, often with a central white area which may be localised or generalised. They often arise in the skin folds, especially the palmar creases. They occur in hyperlipoproteinaemia type III and type IIA, and in association with biliary cirrhosis. The presence of palmar xanthomata, like the presence of tendinous xanthomata, is indicative of hypercholesterolaemia.
The onset of HLH occurs under the age of 1 year in ~70% of cases. Familial HLH should be suspected if siblings are diagnosed with HLH or if symptoms recur when therapy has been stopped. Each full sibling of a child with familial HLH has a 25% chance of developing the disease, a 50% chance of carrying the defective gene (which is very rarely associated with any risk of disease) and a 25% chance of not being affected and not carrying the gene defect.
Patients with HLH, especially when untreated, may need intensive therapy. Therefore, HLH should be included in the differential diagnosis of ICU (Intensive Care Unit) patients with cytopenia and hyperferritinemia.
HLH clinically manifests with fever, enlargement of the liver and spleen, enlarged lymph nodes, yellow discoloration of the skin and eyes, and a rash.
Tuberoeruptive xanthoma (ILDS E78.210) is clinically characterized by red papules and nodules that appear inflamed and tend to coalesce. Tuberous xanthomata are considered similar, and within the same disease spectrum as eruptive xanthomata.
Cryofibrinogenmic disease commonly begins in adults aged 40–50 years old with symptoms of the diseases occurring in the almost always affected organ, skin. Cutaneous symptoms include on or more of the following: cold contact-induced urticarial (which may be the first sign of the disease); painful episodes of finger and/or toe arterial spasms termed Ranaud phenomena; cyanosis, s palpable purpura termed Cryofibrinogenemic purpura), and a lace-like purplish discoloration termed livedo reticularis all of which occur primarily in the lower extremities but some of which may occur in the nose, ears, and buttocks; non-healing painful ulcerations and gangrene of the areas impacted by the cited symptoms. Patients also have a history of cold sensitivity (~25% of cases), arthralgia (14-58%), neuritis (7-19%), myalgia (0-14%); and overt thrombosis of arteries and veins (25-40%) which may on rare occasions involve major arteries such of those of the brain and kidney. Signs of renal involvement (proteinuria, hematuria, decreased glomerular filtration rate, and/or, rarely, renal failure) occur in 4-25% of cases. Compared to secondary cryofibrinogemia, primary crygofibrinogenemia has a higher incidence of cutaneous lesions, arthralgia, and cold sensitivity while having a far lower incidence of renal involvement. Patients with secondary cryofibrinogenemia also exhibit signs and symptoms specific to the infectious, malignant, premalignant vasculitis, and autoimmune disorders associated with their disease. While rare, individuals with cryofibrinogemic disease may experience pathological bleeding due to the consumption of blood clotting factors consequential to the formation of cryofibrinogen precipitates.
A major differential of HLH is Griscelli syndrome (type 2). This is a rare autosomal recessive disorder characterized by partial albinism, hepatosplenomegaly, pancytopenia, hepatitis, immunologic abnormalities, and lymphohistiocytosis. Most cases have been diagnosed between 4 months and 7 years of age, with a mean age of about 17 months.
Three types of Griscelli syndrome are recognised: Type 1 has neurologic symptoms and mutations in MYO5A. Prognosis depends on the severity of neurologic manifestations. Type 2 have mutations in RAB27A and haemophagocytic syndrome, with abnormal T-cell and macrophage activation. This type has a grave prognosis if untreated. Type 3 have mutations in melanophilin and are characterized by partial albinism. This type does not pose a threat to those so affected.
The most distinctive feature of PEPD is episodic burning pain of the rectum, ocular, and mandibular regions. It should be stressed that while pain often originates or is centered in these areas it can also spread or be diffuse in nature. Pain experienced by patients with this disorder should not be underestimated as women with the disorder who have also given birth describe PEPD pain as worse than labor pain. Concomitant with this pain is typically flushing, often in an area associated with the pain.
During attacks in infants, the child often looks startled or terrified and can scream inconsolably. These attacks can be precipitated by injections, defecation, wiping of the perineum, eating, or the consumption of oral medication. When attacks occur due to such precipitation, pain and flushing are often present in the area of attack precipitation, though symptoms may also be diffuse in nature.
Other symptoms may include hypersalivation when attacks are localized in the mandibular region, or leg weakness after foot trauma. A prominent non-physical symptom are tonic non-epileptic seizures. Such seizures are more common in infancy and childhood than during adulthood. In older children, inconsolable screaming usually precedes such attack, followed by apnea, paleness, and stiffness. Such stiffness can last from seconds to a few minutes.
Attack precipitants are usually physical in nature, such as defecation, eating, or taking medicine. Some less common precipitants are micturition, coitus, and painful stimuli. There are also non-physical precipitants, such as the thought or sight of food. In general attacks tend to occur in the precipitated area, though this is not always the case. While some individuals have described a build-up to attacks, in general they tend to be abrupt. The duration of these attacks can be from a few seconds to two hours.
Patients are largely normal between attacks. The only notable interictal problem is constipation, likely due to apprehension of precipitating an attack. This symptom often decreases with age, likely due to coping mechanisms such as the use of stool softeners.
Milroy's disease (MD) is a familial disease characterized by lymphedema, commonly in the legs, caused by congenital abnormalities in the lymphatic system. Disruption of the normal drainage of lymph leads to fluid accumulation and hypertrophy of soft tissues. It is also known as Milroy disease, Nonne-Milroy-Meige syndrome and hereditary lymphedema.
It was named by Sir William Osler for William Milroy, a Canadian physician, who described a case in 1892, though it was first described by Rudolf Virchow in 1863.
Primary immunodeficiencies are disorders in which part of the body's immune system is missing or does not function normally. To be considered a "primary" immunodeficiency, the cause of the immune deficiency must not be secondary in nature (i.e., caused by other disease, drug treatment, or environmental exposure to toxins). Most primary immunodeficiencies are genetic disorders; the majority are diagnosed in children under the age of one, although milder forms may not be recognized until adulthood. While there are over 100 recognized PIDs, most are very rare. About 1 in 500 people in the United States are born with a primary immunodeficiency. Immune deficiencies can result in persistent or recurring infections, autoinflammatory disorders, tumors, and disorders of various organs. There are currently no cures for these conditions; treatment is palliative and consists of managing infections and boosting the immune system.
A broad range of autoimmune diseases have been reported to be associated with cryofibrinogenemia. These diseases include systemic lupus erythematosis, Sjorgren's syndrome, rheumatoid arthritis, mixed connective tissue disease, polymyositis, dermatomyositis, systemic sclerosis, antiphospholipid antibody syndrome, Hashimoto disease, Graves disease, sarcoidosis, pyoderma gangrenosum, spondyloarthropathy, Crohn disease, and ulcerative colitis.
FHM signs overlap significantly with those of migraine with aura. In short, FHM is typified by migraine with aura associated with hemiparesis and, in FHM1, cerebellar degeneration. This cerebellar degeneration can result in episodic or progressive ataxia. FHM can also present with the same signs as benign familial infantile convulsions (BFIC) and alternating hemiplegia of childhood. Other symptoms are altered consciousness (in fact, some cases seem related to head trauma), gaze-evoked nystagmus and coma. Aura symptoms, such as numbness and blurring of vision, typically persist for 30–60 minutes, but can last for weeks and months. An attack resembles a stroke, but unlike a stroke, it resolves in time. These signs typically first manifest themselves in the first or second decade of life.
The most prominent symptoms of erythromelalgia are episodes of erythema, swelling, a painful deep-aching of the soft tissue (usually either radiating or shooting) and tenderness, along with a painful burning sensation primarily in the extremities. These symptoms are often symmetric and affect the lower extremities more frequently than the upper extremities. Symptoms may also affect the ears and face. For secondary erythromelalgia, attacks typically precede and are precipitated by the underlying primary condition. For primary erythromelalgia, attacks can last from an hour to months at a time and occur infrequently to frequently with multiple times daily. Common triggers for these episodes are exertion, heating of the affected extremities, and alcohol or caffeine consumption, and any pressure applied to the limbs. In some patients sugar and even melon consumption have also been known to provoke attacks. Many of those with primary erythromelalgia avoid wearing shoes or socks as the heat this generates is known to produce erythromelalgia attacks. Raynaud's phenomenon often coexists in patients with Erythromelalgia. Symptoms may present gradually and incrementally, sometimes taking years to become intense enough for patients to seek medical care. In other cases symptoms emerge full blown with onset.
May–White syndrome is a rare familial progressive myoclonus epilepsy with lipomas, deafness, and ataxia. This syndrome is probably a familial form of mitochondrial encephalomyopathy.
Paroxysmal extreme pain disorder (PEPD), originally named familial rectal pain syndrome, is a rare disorder whose most notable features are pain in the mandibular, ocular and rectal areas as well as flushing. PEPD often first manifests at the beginning of life, perhaps even "in utero", with symptoms persisting throughout life. PEPD symptoms are reminiscent of primary erythromelalgia, as both result in flushing and episodic pain, though pain is typically present in the extremities for primary erythromelalgia. Both of these disorders have recently been shown to be allelic, both caused by mutations in the voltage-gated sodium channel Na1.7 encoded by the gene "SCN9A". A different mutation in "SCN9A" causes congenital insensitivity to pain.
Collagen, type II, alpha 1 (primary osteoarthritis, spondyloepiphyseal dysplasia, congenital), also known as COL2A1, is a human gene that provides instructions for the production of the pro-alpha1(II) chain of type II collagen.
Anetoderma (also known as "Anetoderma maculosa," "Anetoderma maculosa cutis," "Atrophia maculosa cutis," and "Macular atrophy") is a localized laxity of the skin with herniation or outpouching resulting from abnormal dermal elastic tissue. Anetoderma comes in three types:
- "Primary anetoderma"
- Jadassohn–Pellizzari anetoderma is a benign condition with focal loss of dermal elastic tissue. Jadassohn-Pellizzari is one of two major classifications of primary anetoderma, the other being Schweninger–Buzzi anetoderma. The difference between the two is that Jadassohn–Pellizzari anetoderma is preceded by inflammatory lesions.
- Schweninger–Buzzi anetoderma is a cutaneous condition characterized by loss of dermal elastic tissue.
- "Secondary anetoderma"
- "Familial anetoderma"
Livedo reticularis is a common skin finding consisting of a mottled reticulated vascular pattern that appears as a lace-like purplish discoloration of the skin. The discoloration is caused by swelling of the venules owing to obstruction of capillaries by small blood clots. The blood clots in the small blood vessels can be a secondary effect of a condition that increases a person's risk of forming blood clots, including a wide array of pathological and nonpathological conditions . Examples include hyperlipidemia, microvascular hematological or anemia states, nutritional deficiencies, hyper- and autoimmune diseases, and drugs/toxins.
The condition may be normal or related to more severe underlying pathology. Its differential diagnosis is broadly divided into possible blood diseases, autoimmune (rheumatologic) diseases, cardiovascular diseases, cancers, and endocrine disorders. It can usually (in 80% of cases) be diagnosed by biopsy.
It may be aggravated by exposure to cold, and occurs most often in the lower extremities.
The condition's name derives from the Latin "livere" meaning bluish and "reticular" which refers to the net-like appearance.
A number of conditions may cause the appearance of livedo reticularis:
- Cutis marmorata telangiectatica congenita, a rare congenital condition
- Sneddon syndrome – association of livedoid vasculitis and systemic vascular disorders, such as strokes, due to underlying genetic cause
- Idiopathic livedo reticularis – the most common form of livedo reticularis, completely benign condition of unknown cause affecting mostly young women during the winter: It is a lacy purple appearance of skin in extremities due to sluggish venous blood flow. It may be mild, but ulceration may occur later in the summer.
- Secondary livedo reticularis:
- Vasculitis autoimmune conditions:
- Livedoid vasculitis – with painful ulceration occurring in the lower legs
- Polyarteritis nodosa
- Systemic lupus erythematosus
- Dermatomyositis
- Rheumatoid arthritis
- Lymphoma
- Pancreatitis
- Chronic pancreatitis
- Tuberculosis
- Drug-related:
- Adderall (side effect)
- Amantadine (side effect)
- Bromocriptine (side effect)
- Beta IFN treatment, "i.e." in multiple sclerosis
- Livedo reticularis associated with rasagiline
- Methylphenidate and dextroamphetamine-induced peripheral vasculopathy
- Gefitinib
- Obstruction of capillaries:
- Cryoglobulinaemia – proteins in the blood that clump together in cold conditions
- Antiphospholipid syndrome due to small blood clots
- Hypercalcaemia (raised blood calcium levels which may be deposited in the capillaries)
- Haematological disorders of polycythaemia rubra vera or thrombocytosis (excessive red cells or platelets)
- Infections (syphilis, tuberculosis, Lyme disease)
- Associated with acute renal failure due to cholesterol emboli status after cardiac catheterization
- Arteriosclerosis (cholesterol emboli) and homocystinuria (due to Chromosome 21 autosomal recessive Cystathionine beta synthase deficiency)
- Intra-arterial injection (especially in drug addicts)
- Ehlers-Danlos syndrome – connective tissue disorder, often with many secondary conditions, may be present in all types
- Pheochromocytoma
- Livedoid vasculopathy and its association with factor V Leiden mutation
- FILS syndrome (polymerase ε1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short stature)
- Primary hyperoxaluria, oxalosis (oxalate vasculopathy)
- Cytomegalovirus infection (very rare clinical form, presenting with persistent fever and livedo reticularis on the extremities and cutaneous necrotizing vasculitis of the toes)
- Generalized livedo reticularis induced by silicone implants for soft tissue augmentation
- As a rare skin finding in children with Down syndrome
- Idiopathic livedo reticularis with polyclonal IgM hypergammopathy
- CO angiography (rare, reported case)
- A less common skin lesion of Churg-Strauss syndrome
- Erythema nodosum-like cutaneous lesions of sarcoidosis showing livedoid changes in a patient with sarcoidosis and Sjögren's syndrome
- Livedo vasculopathy associated with IgM antiphosphatidylserine-prothrombin complex antibody
- Livedo vasculopathy associated with plasminogen activator inhibitor-1 promoter homozygosity and prothrombin G20210A heterozygosity
- As a first sign of metastatic breast carcinoma (very rare)
- Livedo reticularis associated with renal cell carcinoma (rare)
- Buerger's disease (as an initial symptom)
- As a rare manifestation of Graves hyperthyroidism
- Associated with pernicious anaemia
- Moyamoya disease (a rare, chronic cerebrovascular occlusive disease of unknown cause, characterized by progressive stenosis of the arteries of the circle of Willis leading to an abnormal capillary network and resultant ischemic strokes or cerebral hemorrhages)
- Associated with the use of a midline catheter
- Familial primary cryofibrinogenemia.
Many conditions affect the human integumentary system—the organ system covering the entire surface of the body and composed of skin, hair, nails, and related muscle and glands. The major function of this system is as a barrier against the external environment. The skin weighs an average of four kilograms, covers an area of two square meters, and is made of three distinct layers: the epidermis, dermis, and subcutaneous tissue. The two main types of human skin are: glabrous skin, the hairless skin on the palms and soles (also referred to as the "palmoplantar" surfaces), and hair-bearing skin. Within the latter type, the hairs occur in structures called pilosebaceous units, each with hair follicle, sebaceous gland, and associated arrector pili muscle. In the embryo, the epidermis, hair, and glands form from the ectoderm, which is chemically influenced by the underlying mesoderm that forms the dermis and subcutaneous tissues.
The epidermis is the most superficial layer of skin, a squamous epithelium with several strata: the stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum basale. Nourishment is provided to these layers by diffusion from the dermis, since the epidermis is without direct blood supply. The epidermis contains four cell types: keratinocytes, melanocytes, Langerhans cells, and Merkel cells. Of these, keratinocytes are the major component, constituting roughly 95 percent of the epidermis. This stratified squamous epithelium is maintained by cell division within the stratum basale, in which differentiating cells slowly displace outwards through the stratum spinosum to the stratum corneum, where cells are continually shed from the surface. In normal skin, the rate of production equals the rate of loss; about two weeks are needed for a cell to migrate from the basal cell layer to the top of the granular cell layer, and an additional two weeks to cross the stratum corneum.
The dermis is the layer of skin between the epidermis and subcutaneous tissue, and comprises two sections, the papillary dermis and the reticular dermis. The superficial papillary dermis with the overlying rete ridges of the epidermis, between which the two layers interact through the basement membrane zone. Structural components of the dermis are collagen, elastic fibers, and ground substance. Within these components are the pilosebaceous units, arrector pili muscles, and the eccrine and apocrine glands. The dermis contains two vascular networks that run parallel to the skin surface—one superficial and one deep plexus—which are connected by vertical communicating vessels. The function of blood vessels within the dermis is fourfold: to supply nutrition, to regulate temperature, to modulate inflammation, and to participate in wound healing.
The subcutaneous tissue is a layer of fat between the dermis and underlying fascia. This tissue may be further divided into two components, the actual fatty layer, or panniculus adiposus, and a deeper vestigial layer of muscle, the panniculus carnosus. The main cellular component of this tissue is the adipocyte, or fat cell. The structure of this tissue is composed of septal (i.e. linear strands) and lobular compartments, which differ in microscopic appearance. Functionally, the subcutaneous fat insulates the body, absorbs trauma, and serves as a reserve energy source.
Conditions of the human integumentary system constitute a broad spectrum of diseases, also known as dermatoses, as well as many nonpathologic states (like, in certain circumstances, melanonychia and racquet nails). While only a small number of skin diseases account for most visits to the physician, thousands of skin conditions have been described. Classification of these conditions often presents many nosological challenges, since underlying etiologies and pathogenetics are often not known. Therefore, most current textbooks present a classification based on location (for example, conditions of the mucous membrane), morphology (chronic blistering conditions), etiology (skin conditions resulting from physical factors), and so on. Clinically, the diagnosis of any particular skin condition is made by gathering pertinent information regarding the presenting skin lesion(s), including the location (such as arms, head, legs), symptoms (pruritus, pain), duration (acute or chronic), arrangement (solitary, generalized, annular, linear), morphology (macules, papules, vesicles), and color (red, blue, brown, black, white, yellow). Diagnosis of many conditions often also requires a skin biopsy which yields histologic information that can be correlated with the clinical presentation and any laboratory data.
Erythromelalgia can be found in several billing codes systems and other systems. Erythromelalgia is generally classified as a disease of the circulatory system, falling under the class of "other peripheral vascular disease", as the following two billing code systems will show:
ICD-9-CM
According to the ICD-9-CM database (International Classification of Diseases, Ninth Revision, Clinical Modification), Erythromelalgia is listed under Diseases of the Circulatory System and is identified by number 443.82.
ICD-9-CM Diagnosis Codes > Diseases of the circulatory system (390-459) > Diseases of arteries, arterioles, and capillaries (440-449) > Other peripheral vascular disease (443) > Other specified peripheral vascular disease (443.8) > Erythromelalgia (443.82).
ICD-10-CM
According to the ICD-10-CM database (International Classification of Diseases, Tenth Revision, Clinical Modification), Erythromelalgia is listed under Diseases of the circulatory system and is identified by I73.81.
ICD-10-CM Diagnosis Codes > Diseases of the circulatory system (I00-I99) > Diseases of arteries, arterioles and capillaries (I70-I79) > Other peripheral vascular diseases (173-9) > Erythromelalgia (I73.81)
Mesh
According to the MESH database (Medical Subject Headings), Erythromelalgia is classified under the unique ID number of D004916.
OMIM
According to the OMIM database (NCBI - Online Mendelian Inheritance in Man), Primary Erythromelalgia is listed under the number: 133020.
Familial Isolated Vitamin E Deficiency also known as Ataxia With Vitamin E Deficiency is a rare autosomal recessive neurodegenerative disease. Symptoms are similar to those of Friedreich ataxia.
The familial amyloid neuropathies (or familial amyloidotic neuropathies, neuropathic heredofamilial amyloidosis, familial amyloid polyneuropathy) are a rare group of autosomal dominant diseases wherein the autonomic nervous system and/or other nerves are compromised by protein aggregation and/or amyloid fibril formation.