Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
By far, the two most common symptoms described are pain and the feeling that teeth no longer correctly meet (traumatic malocclusion, or disocclusion). The teeth are very sensitive to pressure (proprioception), so even a small change in the location of the teeth will generate this sensation. People will also be very sensitive to touching the area of the jaw that is broken, or in the case of condylar fracture the area just in front of the tragus of the ear.
Other symptoms may include loose teeth (teeth on either side of the fracture will feel loose because the fracture is mobile), numbness (because the inferior alveolar nerve runs along the jaw and can be compressed by a fracture) and trismus (difficulty opening the mouth).
Outside the mouth, signs of swelling, bruising and deformity can all be seen. Condylar fractures are deep, so it is rare to see significant swelling although, the trauma can cause fracture of the bone on the anterior aspect of the external auditory meatus so bruising or bleeding can sometimes be seen in the ear canal. Mouth opening can be diminished (less than 3 cm). There can be numbness or altered sensation (anesthesia/paraesthesia in the chin and lower lip (the distribution of the mental nerve).
Intraorally, if the fracture occurs in the tooth bearing area, a step may seen between the teeth on either side of the fracture or a space can be seen (often mistaken for a lost tooth) and bleeding from the gingiva in the area. There can be an open bite where the lower teeth, no longer meet the upper teeth. In the case of a unilateral condylar fracture the back teeth on the side of the fracture will meet and the open bite will get progressively greater towards the other side of the mouth.
Sometimes bruising will develop in the floor of the mouth (sublingual eccymosis) and the fracture can be moved by moving either side of the fracture segment up and down. For fractures that occur in the non-tooth bearing area (condyle, ramus, and sometimes the angle) an open bite is an important clinical feature since little else, other than swelling, may be apparent.
Symptoms include: Short duration pain on biting, sensitivity to temperature change. Fracture lines may be visibly evident. Transillumination may reveal unseen fractures. Radiographic changes such as radiolucencies in the region of the fracture may be seen.
This type of fractured mandible can involve one condyle (unilateral) or both (bilateral). Unilateral condylar fracture may cause restricted and painful jaw movement. There may be swelling over the temporomandibular joint region and bleeding from the ear because of lacerations to the external auditory meatus. The hematoma may spread downwards and backwards behind the ear, which may be confused with Battle's sign (a sign of a base of skull fracture), although this is an uncommon finding so if present, intra-cranial injury must be ruled out. If the bones fracture and overlie each other there may be shortening of the height of the ramus. This results in gagging of the teeth on the fractured side (the teeth meet too soon on the fractured side, and not on the non fractured side, i.e. "open bite" that becomes progressively worse to the unaffected side). When the mouth is opened, there may be deviation of the mandible towards the fractured side. Bilateral condylar fractures may cause the above signs and symptoms, but on both sides. Malocclusion and restricted jaw movement are usually more severe. Bilateral body or parasymphysis fractures are sometimes termed "flail mandible", and can cause involuntary posterior movement of the tongue with subsequent obstruction of the upper airway. Displacement of the condyle through the roof of glenoid fossa and into the middle cranial fossa is rare. Bilateral condylar fractures combined with a symphyseal fracture is sometimes termed a guardsman's fracture. The name comes from this injury occurring in soldiers who faint on parade grounds and strike the floor with their chin.
Pediatric fractures can be classified as complete and incomplete:
- Incomplete: there are three basic forms of incomplete fractures:
- The first is the greenstick fracture, a transverse fracture of the cortex which extends into the midportion of the bone and becomes oriented along the longitudinal axis of the bone without disrupting the opposite cortex.
- The second form is a torus or buckling fracture, caused by impaction. They are usually the result of a force acting on the longitudinal axis of the bone: they are typically a consequence of a fall on an outstretched arm, so they mainly involve the distal radial metaphysis. The word torus is derived from the Latin word 'torus,' meaning swelling or protuberance.
- The third is a bow fracture in which the bone becomes curved along its longitudinal axis.
- Complete fractures
There are also physeal fractures (fractures involving the physis, the growth plate, which is not present in adults). The Salter-Harris classification is the most used to describe these fractures.
Vertical root fractures are a type of fracture of a tooth. They can be characterized by an incomplete or complete fracture line that extends through the long axis of the root toward the apex. Vertical root fractures represent between 2 and 5 percent of crown/root fractures. The greatest incidence occurs in endodontically treated teeth, and in patients older than 40 years of age.
The occurrence of a complete vertical root fracture is often catastrophic for the individual tooth as tooth extraction is usually the only reasonable treatment.
Vertical root fracture is more likely where teeth have undergone extensive prior treatment. It is thought that excessive removal of dentine during procedures such as root canal treatment weakens the tooth. For this reason excessive canal shaping should be avoided. Fracturing may be caused by excessive forces placed on the tooth, such as during compaction of gutta-percha during the obturation phase of endodontics. Trauma can also cause crack formation.
Some clinical features of a greenstick fracture are similar to those of a standard long bone fracture - greenstick fractures normally cause pain at the injured area. As these fractures are specifically a pediatric problem, an older child will be protective of the fractured part and babies may cry inconsolably. As per a standard fracture, the area may be swollen and either red or bruised. Greenstick fractures are stable fractures as a part of the bone remains intact and unbroken so this type of fracture normally causes a bend to the injured part, rather than a distinct deformity, which is problematic.
Even though symptoms vary widely after experiencing a bone fracture, the most common fracture symptoms include:
- pain in the fractured area
- swelling in the fractured area
- obvious deformity in the fractured area
- not being able to use or move the fractured area in a normal manner
- bruising, warmth, or redness in the fractured area
In orthopedic medicine, fractures are classified in various ways. Historically they are named after the physician who first described the fracture conditions, however, there are more systematic classifications in place currently.
After a humerus fracture, pain is immediate, enduring, and exacerbated with the slightest movements. The affected region swells, with bruising appearing a day or two after the fracture. The fracture is typically accompanied by a discoloration of the skin at the site of the fracture. A crackling or rattling sound may also be present, caused by the fractured humerus pressing against itself. In cases in which the nerves are affected, then there will be a loss of control or sensation in the arm below the fracture. If the fracture affects the blood supply, then the patient will have a diminished pulse at the wrist. Displaced fractures of the humerus shaft will often cause deformity and a shortening of the length of the upper arm. Distal fractures may also cause deformity, and they typically limit the ability to flex the elbow.
Diastatic fractures occur when the fracture line transverses
one or more sutures of the skull causing a widening of the suture. While this type of fracture is usually seen in infants and young children as the sutures are not yet fused it can also occur in adults. When a diastatic fracture occurs in adults it usually affects the lambdoidal suture as this suture does not fully fuse in adults until about the age of 60.
Diastatic fractures can occur with different types of fractures and it is also possible for diastasis of the cranial sutures to occur without a concomitant fracture. Sutural diastasis may also occur in various congenital disorders such as cleidocranial dysplasia and osteogenesis imperfecta.
A "corner fracture" or "bucket-handle fracture" is fragmentation of the distal end of one or both femurs, with the loose piece appearing at the bone margins as an osseous density paralleling the metaphysis. The term "bucket-handle fracture" is used where the loose bone is rather wide at the distal end, making it end in a crescent shape. These types of fractures are characteristic of child abuse-related injuries.
Basilar skull fractures are linear fractures that occur in the floor of the cranial vault (skull base), which require more force to cause than other areas of the neurocranium. Thus they are rare, occurring as the only fracture in only 4% of severe head injury patients.
Basilar fractures have characteristic signs: blood in the sinuses; a clear fluid called cerebrospinal fluid (CSF) leaking from the nose (rhinorrhea) or ears (otorrhea); periorbital ecchymosis often called 'raccoon eyes' (bruising of the orbits of the eyes that result from blood collecting there as it leaks from the fracture site); and retroauricular ecchymosis known as "Battle's sign" (bruising over the mastoid process).
A zygoma fracture (zygomatic fracture) is a form of facial fracture caused by a fracture of the zygomatic bone. A zygoma fracture is often the result of facial trauma such as violence, falls or automobile accidents.
Symptoms include flattening of the face, trismus (reduced opening of the jaw) and lateral subconjunctival hemorrhage.
A humerus fracture is a break of the humerus bone in the upper arm. Fractures of the humerus may be classified by the location into proximal region, which is near the shoulder, the middle region or shaft, and the distal region, which is near the elbow. These locations can further be divided based on the extent of the fracture and the specific areas of each of the three regions affected. Humerus fractures usually occur after physical trauma, falls, excess physical stress, or pathological conditions such as tumors. Falls are the most common cause of proximal and shaft fractures, and those who experience a fracture from a fall usually have an underlying risk factor for bone fracture. Distal fractures occur most frequently in children who attempt to break a fall with an outstretched hand.
Symptoms of fracture are pain, swelling, and discoloration of the skin at the site of the fracture. Bruising appears a few days after the fracture. The neurovascular bundle of the arm may be affected in severe cases, which will cause loss of nerve function and diminished blood supply beneath the fracture. Proximal and distal fractures will often cause a loss of shoulder or elbow function. Displaced shaft and distal fractures may cause deformity, and such shaft fractures will often shorten the length of the upper arm. Most humerus fractures are nondisplaced and will heal within a few weeks if the arm is immobilized. Severe displaced humerus fractures and complications often require surgical intervention. In most cases, normal function to the arm returns after the fracture is healed. In severe cases, however, function of the arm may be diminished after recovery.
A person with a Jones fracture may not realize that a fracture has occurred. Diagnosis includes the palpation of an intact peroneus brevis tendon, and demonstration of local tenderness distal to the tuberosity of the fifth metatarsal, and localized over the diaphysis of the proximal metatarsal. Bony crepitus is unusual.
This injury should be differentiated from the developmental apophysis (5th metatarsal tuberosity) commonly and normally occurring at this site in adolescents. Differentiation is possible by characteristics such as absence of sclerosis of the fractured edges (in acute cases) and orientation of the lucent line: transverse (at 90 degrees) to the metatarsal axis for the fracture (due to avulsion pull by the peroneus brevis muscle inserting at the proximal tip) - and parallel to the metatarsal axis in the case of the apophysis. Diagnostic x-rays include anteroposterior, oblique, and lateral views and should be made with the foot in full flexion.
People usually present with a history of an injury and localized pain. There is often a deformity in the wrist with associated swelling. Numbness of the hand can occur because of compression on the median nerve across the wrist (carpal tunnel syndrome). The wrist deformity often limits motion of the fingers.
Swelling, deformity, tenderness and loss of wrist motion are normal features on examination of a person with a distal radius fracture. Examination should rule out a skin wound which might suggest an open fracture. It is imperative to check for loss of sensation, loss of circulation to the hand, and more proximal injuries to the forearm, elbow and shoulder. The most common associated neurological finding is decreased sensation over the thenar eminence due to associated median nerve injury.
A classic "dinner fork" deformity may be seen in dorsally angulated fractures due to dorsal displacement of the carpus. The reverse deformity may be seen in volarly angulated fractures.
The onset is not dramatic. When the boot or shoes are taken off, there is a cramp-like pain in the affected forefoot, and moderate local edema appears on the dorsal aspect. On moving each toe in turn, that of the involved metatarsal causes pain, and when the bone is palpated from the dorsal surface, a point of tenderness is found directly over the lesion. Radiography at this stage is negative, but the condition is diagnosed correctly by military surgeons without the aid of x-rays. In civil life, it is seldom diagnosed correctly for a week or two, when, because of lack of immobilization, there is an excessive deposit of callus (which may be palpable) around the fracture.
A Jones fracture is a break between the base and middle part of the fifth metatarsal of the foot. It result in pain near the midportion of the foot on the outside. There may also be bruising and difficulty walking. Onset is generally sudden.
The fracture typically occurs when the toes are pointed and the foot bends inwards. This movement may occur when changing direction while the heel is off the ground such in dancing, tennis, or basketball. Diagnosis is generally suspected based on symptoms and confirmed with X-rays.
Initial treatment is typically in a cast, without any walking on it, for at least six weeks. If after this period of time healing has not occurred a further six weeks of casting may be recommended. Due to poor blood supply in this area, the break sometimes does not heal and surgery is required. In athletes or if the pieces of bone are separated surgery may be considered sooner. The fracture was first described in 1902 by orthopedic surgeon Robert Jones who sustained the injury while dancing.
Although bone tissue itself contains no nociceptors, bone fracture is painful for several reasons:
- Breaking in the continuity of the periosteum, with or without similar discontinuity in endosteum, as both contain multiple pain receptors
- Edema of nearby soft tissues caused by bleeding of torn periosteal blood vessels evokes pressure pain
- Muscle spasms trying to hold bone fragments in place. Sometimes also followed by cramping
Damage to adjacent structures such as nerves or vessels, spinal cord, and nerve roots (for spine fractures), or cranial contents (for skull fractures) may cause other specific signs and symptoms.
There are nine types of Salter–Harris fractures; types I to V as described by Robert B Salter and W Robert Harris in 1963, and the rarer types VI to IX which have been added subsequently:
- Type I – transverse fracture through the growth plate (also referred to as the "physis"): 6% incidence
- Type II – A fracture through the growth plate and the metaphysis, sparing the epiphysis: 75% incidence, takes approximately 2–3 weeks or more in the spine to heal.
- Type III – A fracture through growth plate and epiphysis, sparing the metaphysis: 8% incidence
- Type IV – A fracture through all three elements of the bone, the growth plate, metaphysis, and epiphysis: 10% incidence
- Type V – A compression fracture of the growth plate (resulting in a decrease in the perceived space between the epiphysis and metaphysis on x-ray): 1% incidence
- Type VI – Injury to the peripheral portion of the physis and a resultant bony bridge formation which may produce an angular deformity (added in 1969 by Mercer Rang)
- Type VII – Isolated injury of the epiphyseal plate (VII–IX added in 1982 by JA Ogden)
- Type VIII – Isolated injury of the metaphysis with possible impairment of endochondral ossification
- Type IX – Injury of the periosteum which may impair intramembranous ossification
Individuals with Jefferson fractures usually experience pain in the upper neck but no neurological signs. The fracture may also cause damage to the arteries in the neck, resulting in lateral medullary syndrome, Horner's syndrome, ataxia, and the inability to sense pain or temperature.
In rare cases, congenital abnormality may cause the same symptoms as a Jefferson fracture.
A Salter–Harris fracture is a fracture that involves the epiphyseal plate or growth plate of a bone. It is a common injury found in children, occurring in 15% of childhood long bone fractures.
As with other types of fractures, scapular fracture may be associated with pain localized to the area of the fracture, tenderness, swelling, and crepitus (the crunching sound of bone ends grinding together). Since scapular fractures impair the motion of the shoulder, a person with a scapular fracture has a reduced ability to move the shoulder joint. Signs and symptoms may be masked by other injuries that accompany the scapular fracture.
This fracture is named after the orthopedic surgeon, Robert William Smith (1807–1873) in his book "A Treatise on Fractures in the Vicinity of Joints, and on certain forms of Accidents and Congenital Dislocations" published in 1847.