Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Concomitant esotropia – that is, an inward squint that does not vary with the direction of gaze – mostly sets in before 12 months of age (this constitutes 40% of all strabismus cases) or at the age of three or four. Most patients with "early-onset" concomitant esotropia are emmetropic, whereas most of the "later-onset" patients are hyperopic. It is the most frequent type of natural strabismus not only in humans, but also in monkeys.
Concomitant esotropia can itself be subdivided into esotropias that are ether "constant," or "intermittent."
- Constant esotropia
- Intermittent esotropia
A patient can have a constant esotropia for reading, but an intermittent esotropia for distance (but rarely vice versa).
Concomitant esotropias can arise as an initial problem, in which case they are designated as 'Primary,' as a consequence of loss or impairment of vision, in which case they are designated as 'Secondary,' or following overcorrection of an initial Exotropia in which case they are described as being 'Consecutive'. The vast majority of esotropias are primary.
Diplopia can also occur when viewing with only one eye; this is called monocular diplopia, or, where the patient perceives more than two images, monocular polyopia. While there rarely may be serious causes behind monocular diplopia symptoms, this is much less often the case than with binocular diplopia. The differential diagnosis of multiple image perception includes the consideration of such conditions as corneal surface keratoconus, subluxation of the lens, a structural defect within the eye, a lesion in the anterior visual cortex or non-organic conditions, however diffraction-based (rather than geometrical) optical models have shown that common optical conditions, especially astigmatism, can also produce this symptom.
"Cross-fixation congenital esotropia", also called "Cianci's syndrome" is a particular type of large-angle infantile esotropia associated with tight medius rectus muscles. With the tight muscles, which hinder adduction, there is a constant inward eye turn. The patient cross-fixates, that is, to fixate objects on the left, the patient looks across the nose with the right eye, and vice versa. The patient tends to adopt a head turn, turning the head to the right to better see objects in the left visual field and turning the head to the left to see those in the right visual field. Binasal occlusion can be used to discourage cross-fixation. However, the management of cross-fixation congenital esotropia usually involves surgery.
Temporary binocular diplopia can be caused by alcohol intoxication or head injuries, such as concussion (if temporary double vision does not resolve quickly, one should see an optometrist or ophthalmologist immediately). It can also be a side effect of benzodiazepines or opioids, particularly if used in larger doses for recreation, the anti-epileptic drugs Phenytoin and Zonisamide, and the anti-convulsant drug Lamotrigine, as well as the hypnotic drug Zolpidem and the dissociative drugs Ketamine and Dextromethorphan. Temporary diplopia can also be caused by tired and/or strained eye muscles or voluntarily. If diplopia appears with other symptoms such as fatigue and acute or chronic pain, the patient should see an ophthalmologist immediately.
Clinically Infantile esotropia must be distinguished from:
1. VIth Cranial nerve or abducens palsy
2. Nystagmus Blockage Syndrome
3. Esotropia arising secondary to central nervous system abnormalities (in cerebral palsy for example)
4. Primary Constant esotropia
5. Duane's Syndrome
Heterophoria is an eye condition in which the directions that the eyes are pointing at rest position, when "not" performing binocular fusion, are not the same as each other, or, "not straight". There can be esophoria, where the eyes tend to cross inward in the absence of fusion; exophoria, in which they diverge; or hyperphoria, in which one eye points up or down relative to the other. Phorias are known as 'latent squint' because the tendency of the eyes to deviate is kept latent by fusion. A person with two normal eyes has single vision (usually) because of the combined use of the sensory and motor systems. The motor system acts to point both eyes at the target of interest; any offset is detected visually (and the motor system corrects it). Heterophoria only occurs during dissociation of the left eye and right eye, when fusion of the eyes is absent. If you cover one eye (e.g. with your hand) you remove the sensory information about the eye's position in the orbit. Without this, there is no stimulus to binocular fusion, and the eye will move to a position of "rest". The difference between this position, and where it would be were the eye uncovered, is the heterophoria. The opposite of heterophoria, where the eyes are straight when relaxed and not fusing, is called orthophoria.
In contrast, fixation disparity is a very small deviation of the pointing directions of the eyes that is present while performing binocular fusion.
Heterophoria is usually asymptomatic. This is when it is said to be "compensated". When fusional reserve is used to compensate for heterophoria, it is known as compensating vergence. In severe cases, when the heterophoria is not overcome by fusional vergence, sign and symptoms appear. This is called decompensated heterophoria.
Heterophoria may lead to squint or also known as strabismus.
When the fusional vergence system can no longer hold back heterophoria, the phoria manifests. In this condition, the eyes deviate from the fixating position.
A rostral lesion within the midbrain may affect the convergence center thus causing bilateral divergence of the eyes which is known as the WEBINO syndrome (Wall Eyed Bilateral INO) as each eye looks at the opposite "wall".
If the lesion affects the PPRF (or the abducens nucleus) and the MLF on the same side (the MLF having crossed from the opposite side), then the "one and a half syndrome" occurs which, simply put, involves paralysis of all conjugate horizontal eye movements other than abduction of the eye on the opposite side to the lesion.
The disorder is caused by injury or dysfunction in the medial longitudinal fasciculus (MLF), a heavily myelinated tract that allows conjugate eye movement by connecting the paramedian pontine reticular formation (PPRF)-abducens nucleus complex of the contralateral side to the oculomotor nucleus of the ipsilateral side.
In young patients with bilateral INO, multiple sclerosis is often the cause. In older patients with one-sided lesions a stroke is a distinct possibility. Other causes are possible.
Heterochromia is classified primarily by onset: as either genetic or acquired.
Although a distinction is frequently made between heterochromia that affects an eye completely or only partially (segmental heterochromia), it is often classified as either genetic (due to mosaicism or congenital) or acquired, with mention as to whether the affected iris or portion of the iris is darker or lighter. Most cases of heterochromia are hereditary, caused by certain diseases and syndromes. Sometimes one eye may change color following disease or injury.
Acquired heterochromia is usually due to injury, inflammation, the use of certain eyedrops that damages the iris, or tumors.
Post-LASIK ectasia is a condition similar to keratoconus where the cornea starts to bulge forwards at a variable time after LASIK eye surgery.
An odd-eyed cat is a cat with one blue eye and one eye either green, yellow, or brown. This is a feline form of complete heterochromia, a condition that occurs in some other animals. The condition most commonly affects white-colored cats, but may be found in a cat of any color, provided that it possesses the white spotting gene.
In flash photographs, odd-eyed cats typically show a red-eye effect in the blue eye, but not in the other eye. This is due to the combined effect of the (normal) presence of a tapetum lucidum in both eyes and the absence of melanin in the blue eye. The tapetum lucidum produces eyeshine in both eyes, but in the non-blue eye a layer of melanin over the tapetum lucidum selectively removes some colors of light.
Photopsia is the presence of perceived flashes of light. It is most commonly associated with posterior vitreous detachment, migraine with aura, migraine aura without headache, retinal break or detachment, occipital lobe infarction, and sensory deprivation (ophthalmo"pathic" hallucinations). Vitreous shrinkage or liquefaction, which are the most common causes of photopsia, cause a pull in vitreoretinal attachments, irritating the retina and causing it to discharge electrical impulses. These impulses are interpreted by the brain as 'flashes'.
This condition has also been identified as a common initial symptom of Punctate inner choroiditis (PIC), a rare retinal autoimmune disease believed to be caused by the immune system mistakenly attacking and destroying the retina. During pregnancy, new-onset photopsia is concerning for severe preeclampsia.
Photopsia can present as retinal detachment when examined by an optometrist or ophthalmologist. However, it can also be a sign of Uveal melanoma. This condition is extremely rare (5–7 per 1 million people will be affected, typically fair-skinned, blue-eyed northern Europeans). Photopsia should be investigated immediately.
Before LASIK surgery, people must be examined for possible risk factors such as keratoconus.
Abnormal corneal topography compromises of keratoconus, pellucid marginal degeneration, or forme fruste keratoconus with an I-S value of 1.4 or more is the most significant risk factor. Low age, low residual stromal bed (RSB) thickness, low preoperative corneal thickness, and high myopia are other important risk factors.
Corneal ectatic disorders or corneal ectasia are a group of uncommon, noninflammatory, eye disorders characterised by bilateral thinning of the central, paracentral, or peripheral cornea.
- Keratoconus, a progressive, noninflammatory, bilateral, asymmetric disease, characterized by paraxial stromal thinning and weakening that leads to corneal surface distortion.
- Keratoglobus, a rare noninflammatory corneal thinning disorder, characterised by generalised thinning and globular protrusion of the cornea.
- Pellucid marginal degeneration, a bilateral, noninflammatory disorder, characterized by a peripheral band of thinning of the inferior cornea.
- Posterior keratoconus, a rare condition, usually congenital, which causes a nonprogressive thinning of the inner surface of the cornea, while the curvature of the anterior surface remains normal. Usually only a single eye is affected.
- Post-LASIK ectasia, a complication of LASIK eye surgery.
- Terrien's marginal degeneration, a painless, noninflammatory, unilateral or asymmetrically bilateral, slowly progressive thinning of the peripheral corneal stroma.
Binasal hemianopsia (or binasal hemianopia) is the medical description of a type of partial blindness where vision is missing in the inner half of both the right and left visual field. It is associated with certain lesions of the eye and of the central nervous system, such as congenital hydrocephalus.
In binasal hemianopsia, vision is missing in the inner (nasal or medial) half of both the right and left visual fields. Information from the nasal visual field falls on the temporal (lateral) retina. Those lateral retinal nerve fibers do not cross in the optic chiasm. Calcification of the internal carotid arteries can impinge the uncrossed, lateral retinal fibers leading to loss of vision in the nasal field.
Note: Clinical testing of visual fields (by confrontation) can produce a false positive result (particularly in inferior nasal quadrants).
Treatment options include contact lenses and intrastromal corneal ring segments for correcting refractive errors caused by irregular corneal surface, corneal collagen cross-linking to strengthen a weak and ectatic cornea, or corneal transplant for advanced cases.
Crossed dystopia (syn.unilateral fusion cross fused renal ectopia) is a rare form of renal ectopia where both kidneys are on the same side of the spine. In many cases, the two kidneys are fused together, yet retain their own vessels and ureters. The ureter of the lower kidney crosses the midline to enter the bladder on the contralateral side. Both renal pelvis can lie one above each other medial to the renal parenchyma (unilateral long kidney) or the pelvis of the crossed kidney faces laterally (unilateral "S" shaped kidney). Urogram is diagnostic.
The anomaly can be diagnosed through ultrasound of urography, but surgical intervention is only necessary if there are other complications, such as tumors or pyelonephritis.
Chiasmal syndrome is the set of signs and symptoms that are associated with lesions of the optic chiasm, manifesting as various impairments of the sufferer's visual field according to the location of the lesion along the optic nerve. Pituitary adenomas are the most common cause; however, chiasmal syndrome may be caused by cancer, or associated with other medical conditions such as multiple sclerosis and neurofibromatosis.
The most common and obvious sign of retinoblastoma is an abnormal appearance of the retina as viewed through the pupil, the medical term for which is leukocoria, also known as amaurotic cat's eye reflex. Other signs and symptoms include deterioration of vision, a red and irritated eye with glaucoma, and faltering growth or delayed development. Some children with retinoblastoma can develop a squint, commonly referred to as "cross-eyed" or "wall-eyed" (strabismus). Retinoblastoma presents with advanced disease in developing countries and eye enlargement is a common finding.
Depending on the position of the tumors, they may be visible during a simple eye exam using an ophthalmoscope to look through the pupil. A positive diagnosis is usually made only with an examination under anesthetic (). A white eye reflection is not always a positive indication of retinoblastoma and can be caused by light being reflected badly or by other conditions such as Coats' disease.
The presence of the photographic fault red eye in only one eye and not in the other may be a sign of retinoblastoma. A clearer sign is "white eye" or "cat's eye" (leukocoria).
There are some common witnesses of evil eye are eyes with different colors especially green or blue its common but can be considered as a curse or Badluck but most of the cases are its just the brain. The brain is very complicated and sometimes it gives information from eyes or process from the brain by the memory that are not actually at present. However it can be a curse or a message from the "Devil".