Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The effects a coloboma has on the vision can be mild or more severe depending on the size and location of the gap. If, for example, only a small part of the iris is missing, vision may be normal, whereas if a large part of the retina or optic nerve is missing, vision may be poor and a large part of the visual field may be missing. This is more likely to cause problems with mobility if the lower visual field is absent. Other conditions can be associated with a coloboma. Sometimes, the eye may be reduced in size, a condition called microphthalmia. Glaucoma, nystagmus, scotoma, or strabismus may also occur.
Other ocular malformations that include coloboma or are related to it:
- CHARGE syndrome, a term that came into use as an acronym for the set of unusual congenital features seen in a number of newborn children. The letters stand for: coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. Although these features are no longer used in making a diagnosis, the name has remained.
- Cat eye syndrome, caused by the short arm (p) and a small section of the long arm (q) of human chromosome 22 being present three (trisomic) or four times (tetrasomic) instead of the usual two times. The term "cat eye" was coined because of the particular appearance of the vertical colobomas in the eyes of some patients.
- Patau syndrome (trisomy 13), a chromosomal abnormality that can cause a number of deformities, some of which include structural eye defects, including microphthalmia, Peters anomaly, cataract, iris and/or fundus coloboma, retinal dysplasia or retinal detachment, sensory nystagmus, cortical visual loss, and optic nerve hypoplasia.
- Treacher Collins syndrome, autosomal dominant syndrome caused by mutation of "TCOF1". Coloboma is part of a set of characteristic facies that features craniofacial malformations, such as downslanting eyes, ear anomalies, or hypoplasia of zygomatic bone and jaw (micrognathia).
Congenital cataracts refers to a lens opacity present at birth. Congenital cataracts cover a broad spectrum of severity: whereas some lens opacities do not progress and are visually insignificant, others can produce profound visual impairment.
Congenital cataracts may be unilateral or bilateral. They can be classified by morphology, presumed or defined genetic cause, presence of specific metabolic disorders, or associated ocular anomalies or systemic findings.
Congenital cataracts occur in a variety of morphologic configurations, including lamellar, polar, sutural, coronary, cerulean, nuclear, capsular, complete, membranous.
Vision in the affected eye is impaired, the degree of which depends on the size of the defect, and typically affects the visual field more than visual acuity. Additionally, there is an increased risk of serous retinal detachment, manifesting in 1/3 of patients. If retinal detachment does occur, it is usually not correctable and all sight is lost in the affected area of the eye, which may or may not involve the macula.
Aniridia is the absence of the iris, usually involving both eyes. It can be congenital or caused by a penetrant injury. Isolated aniridia is a congenital disorder which is not limited to a defect in iris development, but is a panocular condition with macular and optic nerve hypoplasia, cataract, and corneal changes. Vision may be severely compromised and the disorder is frequently associated with a number of ocular complications: nystagmus, amblyopia, buphthalmos, and cataract. Aniridia in some individuals occurs as part of a syndrome, such as WAGR syndrome (kidney nephroblastoma (Wilms tumour), genitourinary anomalies and intellectual disability), or Gillespie syndrome (cerebellar ataxia).
Persistent tunica vasculosa lentis is a congenital ocular anomaly. It is a form of persistent hyperplastic primary vitreous (PHPV).
It is a developmental disorder of the vitreous. It is usually unilateral and first noticed in the neonatal period. It may be associated with micropthalmos, cataracts, and increased intraocular pressure. Elongated ciliary processes are visible through the dilated pupil. A USG B-scan confirms diagnosis in the presence of a cataract.
The first noticeable signs of the syndrome usually do not appear until after the first twelve months of the child’s life. The child usually has severe balance issues as he or she learns to sit or walk, often leaning or tilting the head toward the good eye to correct the brain’s skewed perception of the world. Often the child will fall in the same direction while walking or run into objects that are placed on his or her blind side. Additionally, family members may notice a white reflex in the pupil of an affected child instead of the normal red reflex when taking photographs. The presence of this phenomenon is dependent on the degree of the coloboma, with larger colobomas more likely to manifest this particular phenomenon.
This anomaly must be confirmed through pupillary dilation and examination of the optic disc, as the symptoms alone do not constitute a diagnosis.
People with optic nerve colobomas live relatively normal lives. Although non-prescription glasses should be worn for eye protection, this syndrome does not usually prevent the individual from living a normal life, driving cars, playing sports, reading, etc. Certain activities, however, may be more difficult for patients with optic nerve colobomas due to a compromised view of the world. Like most other eye conditions, a diagnosis of optic nerve coloboma precludes a person from certain occupations.
Childhood cataract is cataract that occurs at birth or in childhood. It may be congenital or acquired.
Aniridia may be broadly divided into hereditary and sporadic forms. Hereditary aniridia is usually transmitted in an autosomal dominant manner (each offspring has a 50% chance of being affected), although rare autosomal recessive forms (such as Gillespie syndrome) have also been reported. Sporadic aniridia mutations may affect the WT1 region adjacent to the AN2 aniridia region, causing a kidney cancer called nephroblastoma (Wilms tumor). These patients often also have genitourinary abnormalities and intellectual disability (WAGR syndrome).
Several different mutations may affect the PAX6 gene. Some mutations appear to inhibit gene function more than others, with subsequent variability in the severity of the disease. Thus, some aniridic individuals are only missing a relatively small amount of iris, do not have foveal hypoplasia, and retain relatively normal vision. Presumably, the genetic defect in these individuals causes less "heterozygous insufficiency," meaning they retain enough gene function to yield a milder phenotype.
- AN
- Aniridia and absent patella
- Aniridia, microcornea, and spontaneously reabsorbed cataract
- Aniridia, cerebellar ataxia, and mental deficiency (Gillespie syndrome)
Zonular cataract and nystagmus, also referred as Nystagmus with congenital zonular cataract is a rare congenital disease associated with Nystagmus and zonular cataract of the eye.
Acorea or fibrous occlusion of the pupil, microphthalmia and cataracts are present in both eyes. Microcornea and iridocorneal dysgenesis also occur. The retina and optic disc are normal.
It has been suggested that the disease follows a x-linked pattern of inheritance though studies done on this particular disease are few.
Individuals with Stickler syndrome experience a range of signs and symptoms. Some people have no signs and symptoms; others have some or all of the features described below. In addition, each feature of this syndrome may vary from subtle to severe.
A characteristic feature of Stickler syndrome is a somewhat flattened facial appearance. This is caused by underdeveloped bones in the middle of the face, including the cheekbones and the bridge of the nose. A particular group of physical features, called the Pierre Robin sequence, is common in children with Stickler syndrome. Robin sequence includes a U-shaped or sometimes V-shaped cleft palate (an opening in the roof of the mouth) with a tongue that is too large for the space formed by the small lower jaw. Children with a cleft palate are also prone to ear infections and occasionally swallowing difficulties.
Many people with Stickler syndrome are very nearsighted (described as having high myopia) because of the shape of the eye. People with eye involvement are prone to increased pressure within the eye (ocular hypertension) which could lead to glaucoma and tearing or detachment of the light-sensitive retina of the eye (retinal detachment). Cataract may also present as an ocular complication associated with Stickler's Syndrome. The jelly-like substance within the eye (the vitreous humour) has a distinctive appearance in the types of Stickler syndrome associated with the COL2A1 and COL11A1 genes. As a result, regular appointments to a specialist ophthalmologist are advised. The type of Stickler syndrome associated with the COL11A2 gene does not affect the eye.
People with this syndrome have problems that affect things other than the eyes and ears. Arthritis, abnormality to ends of long bones, vertebrae abnormality, curvature of the spine, scoliosis, joint pain, and double jointedness are all problems that can occur in the bones and joints. Physical characteristics of people with Stickler can include flat cheeks, flat nasal bridge, small upper jaw, pronounced upper lip groove, small lower jaw, and palate abnormalities, these tend to lessen with age and normal growth and palate abnormalities can be treated with routine surgery.
Another sign of Stickler syndrome is mild to severe hearing loss that, for some people, may be progressive (see hearing loss with craniofacial syndromes). The joints of affected children and young adults may be very flexible (hypermobile). Arthritis often appears at an early age and worsens as a person gets older. Learning difficulties, not intelligence, can also occur because of hearing and sight impairments if the school is not informed and the student is not assisted within the learning environment.
Stickler syndrome is thought to be associated with an increased incidence of mitral valve prolapse of the heart, although no definitive research supports this.
The classical triad of symptoms that defines 3C syndrome includes certain heart defects, hypoplasia (underdevelopment) of the cerebellum, and cranial dysmorphisms, which can take various forms. The heart defects and cranial dysmorphisms are heterogeneous in individuals who are all classed as having Ritscher-Schinzel syndrome.
Heart defects commonly seen with Ritscher-Schinzel syndrome are associated with the endocardial cushion and are the most important factor in determining a diagnosis. The mitral valve and tricuspid valve of the heart can be malformed, the atrioventricular canal can be complete instead of developing into the interatrial septum and interventricular septum, and conotruncal heart defects, which include tetralogy of Fallot, double outlet right ventricle, transposition of the great vessels, and hypoplastic left heart syndrome. Aortic stenosis and pulmonary stenosis have also been associated with 3C syndrome.
The cranial dysmorphisms associated with 3C syndrome are heterogeneous and include a degree of macrocephaly, a large anterior fontanel, a particularly prominent occiput and forehead, ocular hypertelorism (wide-set eyes), slanted palpebral fissures, cleft palate, a depressed nasal bridge, cleft palate with associated bifid uvula, low-set ears, micrognathia (an abnormally small jaw), brachycephaly (flattened head), and ocular coloboma. Low-set ears are the most common cranial dysmorphism seen in 3C syndrome, and ocular coloboma is the least common of the non-concurrent symptoms (cleft lip co-occurring with cleft palate is the least common).
Cranial dysplasias associated with 3C syndrome are also reflected in the brain. Besides the cerebellar hypoplasia, cysts are commonly found in the posterior cranial fossa, the ventricles and the cisterna magna are dilated/enlarged, and Dandy-Walker malformation is present. These are reflected in the developmental delays typical of the disease. 75% of children with 3C syndrome have Dandy-Walker malformation and hydrocephalus.
Signs and symptoms in other body systems are also associated with 3C syndrome. In the skeletal system, ribs may be absent, and hemivertebrae, syndactyly (fusion of fingers together), and clinodactyly (curvature of the fifth finger) may be present. In the GI and genitourinary systems, anal atresia, hypospadia (misplaced urethra), and hydronephrosis may exist. Adrenal hypoplasia and growth hormone deficiency are associated endocrine consequences of Ritscher-Schinzel syndrome. Some immunodeficiency has also been reported in connection with 3C syndrome.
Many children with the disorder die as infants due to severe congenital heart disease. The proband of Ritscher and Schinzel's original study was still alive at the age of 21.
A fetus with 3C syndrome may have an umbilical cord with one umbilical artery instead of two.
The cataract-microcornea syndrome is the association of congenital cataract and microcornea.
Acorea, microphthalmia and cataract syndrome is a rare genetically inherited condition.
Lenticonus (/len·ti·co·nus/ (len″tĭ-ko´nus)) [lens + L. conus, cone] is a rare congenital anomaly of the eye characterized by a conical protrusion on the crystalline lens capsule and the underlying cortex. It can reach a diameter of 2 to 7 mm. The conus may occur anteriorly or posteriorly. If the bulging is spherical, instead of conical, the condition is referred to as "lentiglobus". It produces a decrease in visual acuity and irregular refraction that cannot be corrected by either spectacle or contact lenses.
Biomicroscopically "lenticonus" is characterized by a transparent, localized, sharply demarcated conical projection of the lens capsule and cortex, usually axial in localization. In an early stage, retro-illumination shows an «oil droplet» configuration. Using a narrow slit, the image of a conus is observed. In a more advanced stage associated subcapsular and cortical opacities appear. Retinoscopically the oil droplet produces a pathognomonic scissors movement of the light reflex. This phenomenon is due to the different refraction in the central and the peripheral area of the lens. Ultrasonography also can illustrate the existence of a "lenticonus". A-scan ultrasonography may reveal an increased lens thickness and B- scanultrasonography may show herniated lenticular material, suggestive of a lenticonus. Amblyopia, cataract, strabismus and loss of central fixation may be observed in association with lenticonus posterior. Cataract, flecked retinopathy, posterior polymorphous dystrophy and corneal arcus juvenilis may be encountered in association with lenticonus anterior that occurs as a part of the Alport syndrome.
Exist two distinct types of "lenticonus" based on the face of the lens affected.
Sclerocornea is a congenital anomaly of the eye in which the cornea blends with sclera, having no clear-cut boundary. The extent of the resulting opacity varies from peripheral to total ("sclerocornea totalis"). The severe form is thought to be inherited in an autosomal recessive manner, but there may be another, milder form that is expressed in a dominant fashion. In some cases the patients also have abnormalities beyond the eye (systemic), such as limb deformities and craniofacial and genitourinary defects.
According to one tissue analysis performed after corneal transplantation, the sulfation pattern of keratan sulfate proteoglycans in the affected area is typical for corneal rather than scleral tissue.
Sclerocornea may be concurrent with cornea plana.
Anterior segment mesenchymal dysgenesis is a failure of the normal development of the tissues of the anterior segment of the eye. It leads to anomalies in the structure of the mature anterior segment, associated with an increased risk of glaucoma and corneal opacity.
Peters' (frequently misspelled Peter's) anomaly is a specific type of mesenchymal anterior segment dysgenesis, in which there is central corneal leukoma, adhesions of the iris and cornea, and abnormalities of the posterior corneal stroma, Descemet's membrane, corneal endothelium, lens, and anterior chamber.
This condition is usually unilateral, and its symptoms vary from none to mild blurring and discomfort. Signs include diffuse iris atrophy and small white keratic precipitates (deposits on the inner surface of the cornea), cells presenting in the anterior chamber as well as the anterior vitreous. Glaucoma and cataract occur frequently.
Aphakia is the absence of the lens of the eye, due to surgical removal, a perforating wound or ulcer, or congenital anomaly. It causes a loss of accommodation, far sightedness (hyperopia), and a deep anterior chamber. Complications include detachment of the vitreous or retina, and glaucoma.
Babies are rarely born with aphakia. Occurrence most often results from surgery to remove congenital cataract (clouding of the eye's lens, which can block light from entering the eye and focusing clearly). Congenital cataracts usually develop as a result of infection of the fetus or genetic reasons. It is often difficult to identify the exact cause of these cataracts, especially if only one eye is affected.
People with aphakia have relatively small pupils and their pupils dilate to a lesser degree.
As a result of the changes to the developing embryo, the symptoms are very pronounced features, especially in the face. Low-set ears are a typical characteristic, as in all of the disorders which are called branchial arch syndromes. The reason for this abnormality is that ears on a foetus are much lower than those on an adult. During normal development, the ears "travel" upward on the head; however, in Crouzon patients, this pattern of development is disrupted. Ear canal malformations are extremely common, generally resulting in some hearing loss. In particularly severe cases, Ménière's disease may occur.
The most notable characteristic of Crouzon syndrome is craniosynostosis, as described above; however it usually presents as brachycephaly resulting in the appearance of a short and broad head. Exophthalmos (bulging eyes due to shallow eye sockets after early fusion of surrounding bones), hypertelorism (greater than normal distance between the eyes), and psittichorhina (beak-like nose) are also symptoms. Additionally, external strabismus is a common occurrence, which can be thought of as opposite from the eye position found in Down syndrome. Lastly, hypoplastic maxilla (insufficient growth of the midface) results in relative mandibular prognathism (chin appears to protrude despite normal growth of mandible) and gives the effect of the patient having a concave face. Crouzon syndrome is also associated with patent ductus arteriosus (PDA) and aortic coarctation.
For reasons that are not entirely clear, most Crouzon patients also have noticeably shorter humerus and femur bones relative to the rest of their bodies than members of the general population. A small percentage of Crouzon patients also have what is called "Type II" Crouzon syndrome, distinguished by partial syndactyly.
Signs and symptoms vary depending on the type of cataract, though considerable overlap occurs. People with nuclear sclerotic or brunescent cataracts often notice a reduction of vision. Those with posterior subcapsular cataracts usually complain of glare as their major symptom.
The severity of cataract formation, assuming no other eye disease is present, is judged primarily by a visual acuity test. The appropriateness of surgery depends on a patient's particular functional and visual needs and other risk factors, all of which may vary widely.
Irvine–Gass syndrome, pseudophakic cystoid macular edema or postcataract CME is one of the most common causes of visual loss after cataract surgery. The syndrome is named in honor of S. Rodman Irvine and J. Donald M. Gass.
The incidence is more common in older types of cataract surgery, where postcataract CME could occur in 20–60% of patients, but with modern cataract surgery, incidence of Irvine–Gass syndrome have reduced significantly.
Replacement of the lens as treatment for cataract can cause pseudophakic macular edema. (‘pseudophakia’ means ‘replacement lens’) this could occur as the surgery involved sometimes irritates the retina (and other parts of the eye) causing the capillaries in the retina to dilate and leak fluid into the retina. This is less common today with modern lens replacement techniques