Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
People with Renpenning's typically begin learning language at an ordinary pace, but by the age of 3–4 they experience a regression in mental and physical development, such as mild low muscle tone resulting in elongated faces and rapid loss in the normal growth of the head (microcephaly). Small testes and short stature are also known to commonly occur.
Children with Weaver syndrome tend to look similar and have distinctive physical and craniofacial characteristics, which may include several, but not all of the following features:
- Macrocephaly
- Large bifrontal diameter
- Flattened occiput
- Long philtrum
- Retrognathia
- Round face in infancy
- Prominent chin crease
- Large ears
- Strabismus
- Hypertelorism
- Epicanthal folds
- Downslanting palpebral fissures
Other features may include loose skin, thin deep-set nails, thin hair, short ribs, limited elbow and knee extension, camptodactyly, and a coarse, low-pitched voice. Delayed development of motor skills such as sitting, standing, and walking are commonly exhibited in early childhood. Patients with Weaver syndrome typically have mild intellectual disability with poor coordination and balance. They also have some neurological abnormalities such as speech delay, epilepsy, intellectual disability, hypotonia or hypertonia, and behavioral problems.
Aneuploidy is often fatal, but in this case there is "X-inactivation" where the effect of the additional gene dosage due to the presence of extra X chromosomes is greatly reduced.
Much like Down syndrome, the mental effects of 49,XXXXY syndrome vary. Impaired speech and behavioral problems are typical. Those with 49,XXXXY syndrome tend to exhibit infantile secondary sex characteristics with sterility in adulthood and have some skeletal anomalies. Skeletal anomalies include:
- Genu valgum
- Pes cavus
- Fifth finger clinodactyly
The effects also include:
- Cleft palate
- Club feet
- Respiratory conditions
- Short or/and broad neck
- Low birth weight
- Hyperextensible joints
- Short stature
- Narrow shoulders
- Coarse features in older age
- Hypertelorism
- Epicanthal folds
- Prognathism
- Gynecomastia (rare)
- Muscular hypotonia
- Hypoplastic genitalia
- Cryptorchidism
- Congenital heart defects
- A very round face in infancy
Genitopatellar syndrome is a rare condition characterized by genital abnormalities, missing or underdeveloped kneecaps (patellae), intellectual disability, and abnormalities affecting other parts of the body.
Genitopatellar syndrome is also associated with delayed development and intellectual disability, which are often severe. Affected individuals may have an unusually small head (microcephaly) and structural brain abnormalities, including underdeveloped or absent tissue connecting the left and right halves of the brain (agenesis of the corpus callosum).
Infants with Emanuel syndrome have weak muscle tone (hypotonia) and fail to gain weight and grow at the expected rate (failure to thrive). Their development is significantly delayed, and most affected individuals have severe to profound intellectual disability. Other features of Emanuel syndrome include an unusually small head (microcephaly), distinctive facial features, and a small lower jaw (micrognathia). Ear abnormalities are common, including small holes in the skin just in front of the ears (preauricular pits or sinuses). About half of all affected infants are born with an opening in the roof of the mouth (cleft palate) or a high arched palate. Males with Emanuel syndrome often have genital abnormalities. Additional signs of this condition can include heart defects and absent or unusually small (hypoplastic) kidneys; these problems can be life-threatening in infancy or childhood.
GMS syndrome is a syndrome characterised by goniodysgenesis, intellectual disability, and short stature.
Associated symptoms range from things such as colobomas of the eyes, heart defects, ichthyosiform dermatosis, intellectual disability, and ear abnormalities. Further symptoms that may be suggested include characteristic facies, hearing loss, and cleft palate.
FG syndrome's major clinical features include intellectual disability, usually severe; hyperactive behavior, often with an outgoing personality; severe constipation, with or without structural anomalies in the anus such as imperforate anus; macrocephaly; severe hypotonia; a characteristic facial appearance due to hypotonia, giving a droopy, "open-mouthed" expression, a thin upper lip, a full or pouting lower lip, and partial or complete loss of the corpus callosum. About a third of reported cases of individuals with FG syndrome die in infancy, usually due to respiratory infection; premature death is rare after infancy.
Renpenning's syndrome is a neurodevelopmental disorder recognised in males that causes intellectual disability, mild growth retardation with examples in the testes and head, and a somewhat short stature. The condition only affects males, starting at birth, and was first characterized in 1962. but first described by Hans Renpenning in 1963 after he documented these traits on many children in one family alone.
It can be associated with "PQBP1".
LFS is clinically distinguished from other X-linked forms of intellectual disability by the accompanying presence of marfanoid habitus. Marfanoid habitus describes a group of physical features common to Marfan syndrome. Including Marfan syndrome and LFS, marfanoid features of this type have also been observed with several other disorders, one of which is multiple endocrine neoplasia type 2.
In LFS, specific features identified as marfanoid include: a long, narrow face; tall, thin stature; long, slender limbs, fingers and toes (not unlike arachnodactyly) with joint hyperextensibility, shortened halluces (the big toes) and long second toes.
The diagnosis of marfanoid habitus in LFS is often delayed because many of the physical features and characteristics associated with it are usually not evident until adolescence.
Associated with agenesis (loss) of the corpus callosum, intellectual disabilities are common among individuals with FG syndrome. Motor ability is also impaired as a result of having FG syndrome and its effects on the development of neurons. During infancy, problems arise in the gastrointestinal and gastroesophageal systems of the body. The most common gastrointestinal problems include constipation from imperforated anuses and gastroesophageal reflux. Cardiopulmonary defects also contribute to roughly 60% of premature deaths in infants with FG syndrome. Of all of the congenital heart defects septal defects are the most common. After infancy, long term survival has been recorded to individuals surviving beyond the age of 50.
ATR-16 syndrome affects the blood, development, and brain; symptoms vary based on the specific genes deleted on chromosome 16. Because it is so rare, it is difficult to determine the "core" symptoms of the disease. People with ATR-16 have alpha-thalassemia, a blood disorder where there is less normal hemoglobin in the blood than there should be, and the red blood cells are smaller than they should be (microcytic anemia). Affected children have various characteristic physical features, including clubfoot, "locked" little fingers, microcephaly (small head), hypertelorism (widely spaced eyes), broad, prominent nose bridge, downward-slanted palpebral fissures, small ears, retrognathia, and short neck. Children with ATR-16 syndrome also have mild to moderate intellectual disabilities, developmental delays/growth delays, and speech delays. Some children with ATR-16 have seizures, cryptorchidism (undescended testes), or hypospadias.
The main characteristics of 49,XXXXX are intellectual disability, short stature and craniofacial abnormalities. Other physical traits include the following:
- Small head
- Ear abnormalities
- Widely spaced eyes with upward slanting palpebral fissures and epicanthal folds
- Short neck
- Broad nose with a depressed nasal bridge
- Hyperextension of the elbows
- Dental abnormalities and cleft palate
- Clinodactyly of the 5th finger
- Deformities of the feet
- Heart defects
Craniofacial and other features of LFS include: maxillary hypoplasia (underdevelopment of the upper jaw bone), a small mandible (lower jaw bone) and receding chin, a high-arched palate (the roof of the mouth), with crowding and misalignment of the upper teeth; macrocephaly (enlarged skull) with a prominent forehead, hypernasal speech (voice), a long nose with a high, narrow nasal bridge; a deep, short philtrum (the indentation in the upper lip, beneath the nose), low-set ears with some apparent retroversion, hypotonia (decreased muscle tone), pectus excavatum (a malformity of the chest), slightly enlarged to normal testicular size in males, and seizures.
Hypernasal speech, or "hypernasality", is primarily the result of velopharyngeal insufficiency, a sometimes congenital aberration in which the velopharyngeal sphincter allows too much air into the nasal cavity during speech. In LFS, hypernasality may also be caused by failure of the soft palate and uvula to reach the back wall of the pharynx (the interior cavity of the throat where swallowing generally occurs) during speech, a condition that can be associated with a submucosal cleft palate.
Micro syndrome can be identified in people several ways, one of the most common is ocular problems or other physical traits that don't appear natural. It is especially easy to identify micro syndrome in infants and in younger children. Intellectual or developmental disabilities can seriously affect a patient in the way they think and move. So far according to studies all patients have had serious intellectual or developmental disabilities, and hypotonia is found in all the patients during infancy.
Symptoms include:
- intellectual disability (more than half of the patients have an IQ below 50)
- microcephaly
- sometimes pancytopenia (low blood counts)
- cryptorchidism
- low birth weight
- dislocations of pelvis and elbow
- unusually large eyes
- low ears
- small chin
Weaver syndrome (also called Weaver-Smith syndrome) is an extremely rare congenital disorder associated with rapid growth beginning in the prenatal period and continuing through the toddler and youth years. It is characterized by advanced osseous maturation, and distinctive craniofacial, skeletal, and neurological abnormalities. It was first described by Dr. David Weaver in 1974. It is similar to Sotos syndrome.
The symptoms and prognosis of tetrasomy 9p are highly variable. The severity of the symptoms is largely determined by the size of the isochromosome, the specific regions of chromosome 9p that are duplicated, as well as the number and type of tissues that are affected in the mosaic form.
Most patients exhibit some degree of intellectual disability, abnormal skeletal and muscular development, and abnormal facial structures. Cognitive symptoms range from slight learning disabilities to severe deficits in intellectual functioning. Due to abnormal development of the muscles, individuals often experience limited or delayed mobility. Atypical facial features are characteristic of the syndrome, including widely spaced eyes, a large nose, and unusually positioned ears. Additionally, patients often have extra skin around the neck and widely spaced nipples. A wide range of renal, digestive, cardiac, respiratory, and nervous system abnormalities have been observed.
Though rare, a few cases of phenotypically normal individuals with tetrasomy 9p have been documented.
The signs and symptoms of Kaufman oculocerebrofacial syndrome are consistent with the following:
- High palate
- Microcephaly
- Constipation
- Intellectual disability
- Muscular hypotonia
- Nystagmus
Symptoms of M2DS include infantile hypotonia and failure to thrive, delayed psychomotor development, impaired speech, abnormal or absent gait, epilepsy, spasticity, gastrointestinal motility problems, recurrent infections, and genitourinary abnormalities. Many of those affected by M2DS also fit diagnostic criteria for autism. M2DS can be associated with syndromic facies, namely an abnormally flat back of the head, underdevelopment of the midface, ear anomalies, deep-set eyes, prominent chin, pointed nose, and a flat nasal bridge.
Zunich–Kaye syndrome, also known as Zunich neuroectodermal syndrome, is a rare congenital ichthyosis first described in 1983. It is also referred to as CHIME syndrome, after its main symptoms (colobomas, heart defects, ichthyosiform dermatosis, intellectual disability, and either ear defects or epilepsy). It is a congenital syndrome with only a few cases studied and published.
Alopecia contractures dwarfism mental retardation syndrome or (ACD mental retardation syndrome) is a developmental disorder which causes mainly baldness and dwarfism in combination with intellectual disability; skeletal anomalies, caries and nearsightedness are also typical.
The ACD mental retardation syndrome was first described in 1980 by Albert Schinzel and only few cases have since been identified in the world. At the time Dr. Schinzel made no conclusion of the hereditary pattern of this syndrome but similarities between cases reported by year 2000 seem to suggest autosomal or x-linked recessive inheritance or possibly a dominant mutation caused by mosaicism as causes of this syndrome.
Genitopatellar syndrome is a rare disorder with characteristic craniofacial features, congenital flexion contractures of the lower limbs, absent or abnormal patellae, urogenital anomalies, and severe psychomotor retardation.
In 2012, it was shown that mutations in the gene KAT6B cause the syndrome.
This autosomal dominant disorder is characterized by a number of health defects including Hirschsprung's disease, intellectual disability, epilepsy, delayed growth and motor development, congenital heart disease, genitourinary anomalies and absence of the corpus callosum. However, Hirschsprung's disease is not present in all infants with Mowat–Wilson syndrome and therefore it is not a required diagnostic criterion. Distinctive physical features include microcephaly, narrow chin, cupped ears with uplifted lobes with central depression, deep and widely set eyes, open mouth, wide nasal bridge and a shortened philtrum.
Different areas of deletion are associated with different symptoms. Deletions from the centromere to 13q32 or any deletions including the 13q32 band are associated with slow growth, intellectual disability, and congenital malformations. Deletions from 13q33 to the end of the chromosome are associated with intellectual disability. Intellectual disabilities range from very mild to very severe, and can co-occur with behavioral disorders and/or autism spectrum disorders.
At birth, the main symptoms include low weight (due to intrauterine growth restriction), hypotonia, and feeding difficulties. Infants may also have cleft palate.
13q deletion syndrome gives a characteristic appearance to affected individuals, potentially including microphthalmia (small eyes), hypertelorism (wide-set eyes), thin forehead, high palate, underdeveloped midface, small mouth, small nose, broad, flat nasal bridge, short neck, low hairline, irregular or wrongly positioned teeth, low-set ears, micrognathia (small jaw), tooth enamel defects, short stature, microcephaly (small head), a prominent, long philtrum, and earlobes turned inwards.
Congenital heart disease is associated with 13q deletion syndrome. Common defects include atrial septal defect, tetralogy of Fallot, ventricular septal defect, patent ductus arteriosus, pulmonary stenosis, and coarctation of the aorta. Defects of the endocrine system, digestive system, and genitourinary system are also common. These include underdevelopment or agenesis of the pancreas, adrenal glands, thymus, gallbladder, and thyroid; Hirschsprung's disease; gastric reflux, imperforate anus, retention testis, ectopic kidney, renal agenesis, and hydronephrosis.
A variety of brain abnormalities are also associated with 13q deletion. They can include epilepsy, craniosynostosis (premature closing of the skull bones), spastic diplegia, cerebral hypotrophy, underdevelopment or agenesis of the corpus callosum, cerebellar hypoplasia, deafness, and, rarely, hydrocephalus, Dandy–Walker syndrome, and spina bifida. The eyes can be severely damaged and affected individuals may be blind. They may also have coloboma of the iris or choroid, strabismus, nystagmus, glaucoma, or cataracts.
Other skeletal malformations are found with 13q deletion syndrome, including syndactyly, clubfoot, clinodactyly, and malformations of the vertebrae and/or thumbs.
Deletions that include the 13q32 band, which contains the brain development gene ZIC2, are associated with holoprosencephaly; they are also associated with hand and foot malformations. Deletions that include the 13q14 band, which contains the tumor suppressor gene Rb, are associated with a higher risk of developing retinoblastoma, which is more common in XY children. Deletion of the 13q33.3 band is associated with hypospadias. Other genes in the potentially affected region include NUFIP1, HTR2A, PDCH8, and PCDH17.